
Milestone 3 : Design Document

Matthew Pike, 523355@swansea.ac.uk
Supervisor: Dr Max Wilson

Swansea University
Computer Science Department

Contents

1 Introduction 1

2 System Overview 4

3 Data Abstraction Layer (DAL) 6
3.1 Purpose . 6
3.2 Design . 7
3.3 Design Decisions . 7

4 Setup 10
4.1 Purpose . 10
4.2 Design . 10
4.3 Design Decisions . 12

5 Browser 15
5.1 Purpose . 15
5.2 Design . 15
5.3 Design Decisions . 16

6 Collectors 18
6.1 Purpose . 18
6.2 Design . 19
6.3 Design Decisions . 21

7 Visualiser 22
7.1 Purpose . 22
7.2 Design . 22
7.3 Design Decisions . 23

8 Heatmap 25
8.1 Purpose . 25
8.2 Design . 25
8.3 Design Decisions . 26

9 MouseTrail 27
9.1 Purpose . 27
9.2 Design . 27

i

Contents

9.3 Design Decisions . 27

10 SoundPlayer 29
10.1 Purpose . 29
10.2 Design . 29
10.3 Design Decisions . 30

ii

1 Introduction

In this design document we will provide the necessary documentation for the design
of the User Study System (USS). We do so by detailing the design of the current
implementation of the system.
This document will be expressed in a semi-formal notation, using a variety of UML
diagrams. Additionally, we detail the key design decisions made during the con-
struction of the system, and discuss our rationale for making those decisions.

Term Definition

As with any technical project, there exists numerous technical abbreviations that
are used in place of long descriptors. We present a table below of the various
abbreviations used in this document, which should serve as an aid to the reader.

Term Definition

Visualiser The part of the system responsible for displaying the data
visualisation.

Document The web site or web based document being investigated in the
user study.

Experiment The study that is being conducted. Typically will contain a
User and a Conductor.

Data Source A device/software/location that is recorded by the Web
Browser.

Recorded Instance

Since a single experiment on a single user can contain
numerous conditions and tasks, we must distinguish what one
unique combination of these properties are called. We have
chosen ’Recorded Instance’ to represent this. A Recorded

Instance is an identifier for: Experiment -> User ->
Condition -> Task.

Stack A Stack is a part of the Visualiser UI that represents a single
Recorded Instance. A Stack is therefore a UI component.

WPF Windows Presentation Foundation - The visual framework
used to develop the user interface(s) in this project.

ORM Object Relational Mapping - a way of linking entries in a
database to a usable format in application code.

1

SQLCE SQL Compact Edition, the embedded database product we
use to store application data.

Personas

In addition to technical abbreviations, the project features unique individuals that
partake or feature somehow in the system. Below is a table documenting these
individuals and their role in the system. Again, this table is meant as an aid to the
reader.

Individual Role

Conductor
The person responsible for performing the user study. This is
typically a researcher who is aiming to prove a particular

hypothesis.

Researcher

The person who is responsible for gaining insight from the
user study. The Researcher and Conductor can typically be

the same person, however this is not always the case,
especially in a large research group. The Researcher is

therefore a member of the research team who is wishing to use
the data collected from the study.

User The person who is sitting the user study. Their responsibility
is to perform tasks provided to them by the conductor.

Client The person who will be receiving the finished software
project. In this case it is Pingar.

2

Electronic Document

Due to the limited real estate of physical paper, some of the technical diagrams
may be unreadable. For a high resolution, electronic copy of this document, please
navigate to the following URL to download an electronic copy:

http://dl.dropbox.com/u/21780/Docs/Design%20Document.pdf

3

http://dl.dropbox.com/u/21780/Docs/Design%20Document.pdf

2 System Overview

In this section we will provide a brief overview of the User Study System (USS) and
the subsections that form it. The intention for this section is to provide an overview
of the components that form the USS and their interactions with one another in
order to gain a basic understanding of the USS’s structure.
The USS was designed as a combination of two major subsystems; Browser and the
Visualiser. However, the subsystem Browser, can be further broken into two separate
components; Setup and Web Browser. This relationship is shown in Figure 2.1.

Figure 2.1: The Major subsystems and components that form the USS.

We see from Figure 2.1 that each component in the overall system is linearly depend-
ant on the component before it. This gives the system a seemingly flat hierarchy.
However, in terms of actual implementation, additional components are required
in order for the system to operate correctly. As such, Figure 2.2 is an accurate
representation of the major subsystems that exist in the USS.
The purpose of this document is to explain the design of these subsystems and how
they interact to form the USS. Figure 2.2 shows the dependencies of each component
in the system, and the remainder of this document will aim to detail each component.
The document has been organised according to the components identified in Figure 2.2.
The diagram has been generated according to the namespaces in the actual imple-
mentation of the project. The remainder of the documented systematically goes
through each major component and documents its purpose and any design decisions.

4

Figure 2.2: The components of the USS and their interaction/dependency with
one another. 5

3 Data Abstraction Layer (DAL)

Namespace
• Pingar.DAL

Key Files
• USS/DAL/Context.cs
• USS/DAL/DatabaseSetup.cs
• USS/DAL/Experiment/Condition.cs
• USS/DAL/Experiment/Experiment.cs
• USS/DAL/Experiment/ExperimentInstance.cs
• USS/DAL/Experiment/Participant.cs
• USS/DAL/Experiment/Task.cs
• USS/DAL/Settings/AudioSettings.cs
• USS/DAL/Settings/BrainSettings.cs
• USS/DAL/Settings/ScreenSettings.cs
• USS/DAL/Settings/WebEventSettings.cs

3.1 Purpose

The Data Abstraction Layer (DAL) should be thought of as the gatekeeper to the
application data. The publicly exposed functionality of the DAL provides the inter-
face to the USS database, which is responsible for storing the data relating to the
conducted user studies.
The DAL specifies the data entities stored in the system database, these are iden-
tified by their representative data type e.g. the Participant entity represents a
participant in a user study. These entities and their relations to one another are
then used to form the system database automatically, via the Entity Framework.
Additionally the DAL is responsible for the administrative side of the system’s data.
The component includes functionality to create, populate and validate the USS
database.

6

The primary and only public responsibility of the DAL however is to provide a
Context, which other components can use to access the system database.
The Entity Framework technology has been used exclusively in the DAL. The
framework is simply an object-relational mapper which automatically translates
classes into representative database tables. It can be thought of as structured seri-
alization.

3.2 Design

In Fig. 3.1 we provide the UML diagram representation for the DAL. The major-
ity of the component consists of entity types. That is, the majority of the DAL
consists of the actual data being represented in the database. We see that as well
as defining individual entities (e.g. BrainSettings, Experiment, ...), we have
also created a relationship between entities. The primary example, can be seen in
ExperimentInstance which has a many-to-one association with all other entities
in the DAL. ExperimentInstance, represents a single User Study recording and
the various settings for that individual recording.
Additionally, there are 3 stand alone classes in the DAL. The first two DbInitializer
and DatabaseSetup simply define how a database file should be generated and
what should be inserted as default values. Context is however of more interest.
We see from Fig. 3.1, that Context also exposes each of the entities stored in the
DAL, however Context acts as the intermediary for the actual data in the database.
Therefore it is responsible for committing and retrieving the specified entities from
the system database.

3.3 Design Decisions

The primary design decision taken for the DAL was the representation of the data
using a Code First representation. Under the Entity Framework, we could have
followed a number of alternative routes:
Database First In this mode, we would develop the system’s database using an

external tool (e.g. SQL) and then interface to the DB using the entity frame-
work. We decided against this approach since it tied us to a specific database
technology and was fairly inflexible.

Model First Using this mode, we could develop abstract data models using a graph-
ical IDE (Visual Studio), and then instruct the Entity Framework to generate
the representative classes. We did find this approach productive, however we
found that the generated code was unnecessarily complex.

7

Code First Our chosen approach, Code First allowed us to specify data entities and
their relations using standard C# code. From this simple (hierarchical) struc-
ture, the Entity Framework generated the representative database and allowed
for massive code reuse. We found this approach to be the most intuitive also.

8

Figure 3.1: The UML diagram for the DAL.

9

4 Setup

Namespace
• Pingar.Setup

Key Files
• USS/Setup/ViewModels/MainWindowViewModel.cs
• USS/Setup/ViewModels/Pages/BeginExperimentPageModel.cs
• USS/Setup/ViewModels/Pages/CollectorsPageModel.cs
• USS/Setup/ViewModels/Pages/ExperimentPageModel.cs
• USS/Setup/ViewModels/Pages/HomePageModel.cs
• USS/Setup/Views/MainWindow.cs
• USS/Setup/Views/Pages/BeginExperimentPage.cs
• USS/Setup/Views/Pages/CollectorsPage.cs
• USS/Setup/Views/Pages/ExperimentPage.cs
• USS/Setup/Views/Pages/HomePage.cs

4.1 Purpose

The Setup component is responsible for providing the User Interface for Conductors
to configure user studies. The interface is simply a front end for the data held in
the USS database, and does not perform any advanced/ atypical operations.

4.2 Design

The Setup component is intended to interface with the USS database. To accomplish
this we have implemented the MVVM architectural pattern, which separates the
various application layers into defined sections:
Model This is the data represented in the USS database. We get this layer for “free”

from the DAL, which is an indicator that we are following good engineering
principles, since we are achieving high code reuse.

10

View This is the presentation layer that the conductor interacts with. This should
simply define how a particular screen in the interface should appear visually.
The viewer should have no knowledge or preconceptions of the data that it is
displaying.

View Model The view model is the “glue” that ties the data (Model) to the user
interface (View). The View Model mediates between the View and the Model
based on the data bindings in the View.

We can see from the component’s dependency graph (Figure 2.2) that the Setup
component’s only external dependency (excluding application Settings) is the DAL.
This confirms that the component’s only intention is to behave as a front end to the
application data.
In terms of the structure of the Setup component, the UML diagram shown in
Figure 4.2 provides the necessary detail of the component’s structure. We see that
the design matches our chosen architectural pattern MVVM.
In total there are 4 Pages in the Setup application. Each Page has an associated
View Model and View, denoted by the class name:

1. Welcome

a) View - HomePage
b) View Model - HomePageModel

2. Experiment

a) View - ExperimentPage
b) View Model - ExperimentPageModel

3. Collectors

a) View - CollectorsPage
b) View Model - CollectorsPageModel

4. Begin Experiment

a) View - BeginExperimentPage
b) View Model - BeginExperimentModel

This hierarchy can also be seen in Figure 4.1. Additionally there is a MainWindow
which is simply the container that holds each of the pages and provides the page
switching logic.

11

Figure 4.1: The hierarchy of the Setup component.

4.3 Design Decisions

The primary design decision made for the Setup component was the architectural
pattern. There are several patterns designed for interfacing user interfaces and data
collections. The two primary patterns are : Model View Controller (MVC) and
Model View View Model (MVVM). Both are very similar in structure, with each
separating the View and Data from one another, and interfacing them together
through some other layer.
However our decision to use MVVM over MVC is based on the following criteria:
Library Support Despite there being many third party libraries supporting MVC

and WPF (the User Interface Library), there are more mature and extensive
libraries supporting MVVM. Our chosen library for the Setup component was
Catel http://catel.catenalogic.com/. Catel was chosen for its simplicity and
its use of annotations to tag classes as having certain functionality.

Event Driven Programming MVVM is specifically designed for event driven pro-
gramming such as a user interacting with a user interface. Whereas MVC is
designed to be very flexible, allowing controllers to be used interchangeably,
the view model (used in MVVM) tends to be a lot more specific to the view
that it serves. This may seem like a negative since MVVM is therefore less
flexible than MVC, but in actuality, MVVM exploits event based program-
ming principles such as data binding which would break the MVC pattern. As
such it requires less set-up code using the MVVM when compared to MVC.

The decision to use MVVM also structured the Setup component in a very organised

12

http://catel.catenalogic.com/

manner. We see from Figure 4.1 that the component is split into 2 distinct name-
spaces - Views and ViewModels. Being well structured should reduce the complexity
of future maintenance.

13

Figure 4.2: The UML diagram for the Setup component.

14

5 Browser

Namespace
• Pingar.Browser

Key Files
• USS/Browser/Program.cs
• USS/Browser/WebBrowser.cs
• USS/Browser/CommObject.cs

5.1 Purpose

The Browser component is the front end web browser that the participant uses
during the User Study. Its direct functionality is simply to behave as a standard
web browser and provide the standard navigation features that are familiar to most
users. Additionally the Browser is responsible for initiating the Collectors (See
chapter 6) which are responsible for collecting the various data points during the
user study.

5.2 Design

Due to the relative simple requirements of this component, the design of the Browser
component is fairly straightforward. There are only 2 classes that are of interest in
this component.
The first class WebBrowser , provides the front end for the web browsing func-
tionality. Since the browser is fairly simple and does not interact with any external
data, we simply implemented all navigation logic in the code-behind file for the web
browser.
The second class of interest is CommObject. This class is tagged with the annota-
tion - ComVisible. By tagging the class with this annotation, we are instructing
the compiler to make the class publicly available to anything implementing the
COM interface. By doing this we are able to address CommObject directly from

15

within our JavaScript code, which is responsible for capturing JavaScript derived
events when the participant browses the web. Therefore this class can be thought of
as the bridge between our JavaScript library and the Collectors component (See
chapter 6) which logs the web events to file.

5.3 Design Decisions

The primary design decision here was the use of the COM as the communication
bridge between JavaScript and the client code. Our decision to use COM over
other potential methods, such as event handlers in the WebBrowser component,
was down to completeness. We discovered that COM was the only approach that
allowed us to capture all JavaScript events during a study. Other approaches (such
as custom event handlers) provided access to some, but not all events and as such
were not suitable.
Alternatively we could have chosen to use an alternative Web browsing component,
in favour of the standard WPF WebBrowser variant. Alternative technologies
exist (such as http://awesomium.com/), but were not used in this current imple-
mentation because of technical difficulties and time constraints.

16

http://awesomium.com/

Figure 5.1: The UML diagram for the Browser Component.
17

6 Collectors

Namespace
• Pingar.Collectors

Key Files
• USS/Collectors/Brain/Data/Facial_Data.cs
• USS/Collectors/Brain/Data/Emotion_Data.cs
• USS/Collectors/CollectorManager.cs
• USS/Collectors/WebEvents/MouseLogger.cs
• USS/Collectors/WebEvents/WebEventCollector.cs
• USS/Collectors/WebEvents/WebEventLogger.cs
• USS/Collectors/Brain/BrainCollectorRunner.cs
• USS/Collectors/Brain/Data/Pair.cs
• USS/Collectors/ScreenCapture/ScreenCaptureCollector.cs
• USS/Collectors/Audio/AudioCaptureCollector.cs
• USS/Collectors/BaseCollector.cs
• USS/Collectors/Brain/BrainCollector.cs
• USS/Collectors/Audio/AudioUtilities.cs

6.1 Purpose

The Collectors namespace forms a vital part of the USS. It is responsible for
capturing the specified data during a user study. The component currently supports
a variety of data acquisition sources:

1. Emotiv EPOC brain scanner
2. Audio from microphone
3. Screen capture of the web browser
4. Web Events from the web browser

18

The component is designed to provide the collection functionality from each of these
sources and store them permanently on disk. The component is also required to be
extensible, allowing for additional data sources to be added in the future.

6.2 Design

The design of the Collector component required a great deal of consideration as
there were many factors to consider.
First and foremost, the component needed to be extensible, allowing for additional
data sources to be added in the future. To facilitate this we created a base class
BaseCollector which contains two delegate methods - Start and End. The
BaseCollector class includes the necessary scaffolding code for registering a col-
lection source in the application. All that is required to add a new data collector
therefore is the implementation of the Start and End delegate methods, which are
called when the user study itself is begun and is about to end respectively. This
provides very simple extensibility.
Secondly, the Collector must have some way of simultaneously starting and ending
all of the necessary collectors. To accomplish this we created the class Collector-
Manager which is responsible for managing each data source.
The remainder of the classes in Collector component (shown in Figure 6.1) are
implementation of data sources. Each data source follows a similar structure:
Data Structures Each data source defines a data structure representing a single

unit of data.
Collector The class which implements BaseCollector. This class is responsible

for collecting the data, inserting it into the associated data structure and
saving it to disk.

Utility Additionally, many data sources have helper utilities which provide addi-
tional functionalities not associated with data collection, but aid in the general
process e.g. routines for processing the collected data.

We have used this technique very successfully on a number of diverse data sources
and can recommend this approach for future data source development.

19

Figure 6.1: The UML diagram for the DAL.

20

6.3 Design Decisions

The requirement for the Collector component to be extensible immediately made
us consider the use of an existing plug-in architecture, such as Managed Extensibility
Framework (MEF - http://mef.codeplex.com/). We researched the framework con-
siderably, and even constructed a prototype utilising the library. MEF is perfectly
suited to solving this problem, and the functionality and documentation provided
with the framework is of a high quality. However, due to the considerable time
constraints imposed upon this project, we were not able to utilise the framework.
We instead opted for a simple, tried and tested approach using the State design
pattern. Using this pattern we expose certain functionality in the client application
(BaseCollector) which allows plugins to “hook” into. The approach provides a
high level of integration between client and plugins, without the need for extensive
integration code in the plugin.

21

http://mef.codeplex.com/

7 Visualiser

Namespace
• Pingar.Visualiser

Key Files
• USS/Visualiser/MainWindow.cs
• USS/Visualiser/Pane.cs
• USS/Visualiser/ExperimentLoader.cs
• USS/Visualiser/BassEngine.cs
• USS/Visualiser/ExperimentTime.cs
• USS/Visualiser/ImageTime.cs
• USS/Visualiser/ImageViewer.cs

7.1 Purpose

The Visualiser Component is the front end responsible for visualising and comparing
User Study recordings. The component displays numerous visualisations of a single
recording and is responsible for ensuring all visualisations occur in the correct time-
frame, according to the researcher’s input.

7.2 Design

The Visualiser component is responsible for a variety of tasks and fulfils many re-
sponsibilities. In order to document this correctly we detail the design according
to each responsibility. The UML diagram for the Visualiser component is shown in
Figure 7.1.

22

Container - MainWindow The MainWindow class is the User Interface that
contains the visualised recordings within it. Since the Visualiser component was re-
quired to display many recordings at once, it was designed to incorporate a tabbed
interface allowing for massive customisation in the display of recordings. To accom-
plish this the MainWindow uses AvalonDock (http://avalondock.codeplex.com/),
a WPF control library which is used to create a docking layout system like that
present in Visual Studio.

A Single Recording - Pane A single recording is visualised within its own “Pane”
(referred to as DockableContent by AvalonDock). Each pane has references to:
Heatmap Image Viewer The component responsible for displaying a heatmap visu-

alisation. See chapter 10 for details.
MouseTrail Image Viewer The component responsible for displaying a mouse trail

visualisation. See chapter 9 for details.
AudioPlayer The component responsible for displaying and playing the associated

audio recording. See chapter 10 for details.
ExperimentLoader This class is responsible for loading the recorded experiment

data from disk into memory. This is done dynamically according to the in-
formation needs. For example, if image X is required at time Y, then Exper-
imentLoader only loads the image into memory at time Y. This conserves
memory usage and ensures that the application is responsive.

ExperimentTime This class is a simple data structure that conveys the current
experiment time. This is not as trivial as it first seems however, since an ex-
periment has both a Start and End time, as the Researcher is able to select
periods of time from within the experiment. This class also implements the
PropertyChangedEventHandler interface, allowing for the automatic im-
plementation of the Observer design pattern on the ExperimentTime event.

BassEngine This is the class responsible for decoding and gathering statistics from
the audio recording associated with the user study. The class simply acts as
a helper to the underlying BASS engine (http://www.un4seen.com/) which
performs the actual operations.

7.3 Design Decisions

For the Visualiser component, a lot of the key design decisions were in fact handled
transparently through our chosen docking library - AvalonDock. The key design
decisions, such as how to represent a single recording and manage many recordings,
were handled by the library. The design of the Visualiser was therefore based heavily
on the recomended patterns provided by AvalonDock -
http://avalondock.codeplex.com/documentation.

23

http://avalondock.codeplex.com/
http://www.un4seen.com/
http://avalondock.codeplex.com/documentation

Figure 7.1: The UML diagram for the Visualiser Component.

24

8 Heatmap

Namespace
• Pingar.HeatMap

Key Files
• USS/HeatMap/heatdot.png
• USS/HeatMap/HeatMapManager.cs

8.1 Purpose

The HeatMap component is designed to overlay a colour heatmap visualisation on-
top of a provided image using a collection of coordinates.

8.2 Design

The UML diagram for the HeatMap component (Shown in Figure 8.1), shows that
the component consists of a single class. The class can be thought of as a utility
class. The class is informally divided into 3 stages:

1. Load Base Image (LoadImage) - During this initial stage, the base image
(i.e. the image which is to be overlayed with the heatmap) is loaded into the
heatmap manager, and consequently into memory.

2. Add Hits (AddHit) - At this point the class expects for the points that the
HeatMap will visualise, to be loaded into the manager. A check is made to
ensure that the Hit falls within the image boundary.

3. Generate the Heatmap (GenerateHeatMap) - During this final stage,
the HeatMap itself is created. The method proceeds to successively add the
heatdot.png image file onto each Hit stored in the manager. This collection of
“heat dots” is then colourised according to a custom defined colour scale and
overlayed onto the original image.

25

Figure 8.1: The UML diagram for the HeatMap Component.

8.3 Design Decisions

The primary design decision made here was to do with memory management. The
process of generating the heatmap is fairly memory intensive and the process allows
for many resource locks to be left open unnecessarily. We therefore ensured in our
design that every effort was made to reduce and reuse as much allocated memory
as possible. A primary example is the loading of the heatdot.png image file into
memory. This occurs only once throughout the lifetime of the manager, but the
image file is referenced thousands of times during a single HeatMap generation.
This approach therefore save many cycles, since the class is not constantly loading
the image file.

26

9 MouseTrail

Namespace
• Pingar.MouseTrail

Key Files
• USS/MouseTrail/MouseTrailManager.cs

9.1 Purpose

The MouseTrail component is designed to overlay a Mouse Trail visualisation on-top
of a provided image using a collection of coordinates.

9.2 Design

The UML diagram for the MouseTrail component (Shown in Figure 9.1), shows that
the component consists of a single class. The class can be thought of as a utility
class. The class is informally divided into 3 stages:

1. Load Base Image (LoadImage) - During this initial stage, the base image
(i.e. the image which is to be overlayed with the mouse trail visualisation) is
loaded into the MouseTrail manager, and consequently into memory.

2. Add Hits (AddHit) - At this point the class expects for the points that the
MouseTrail will visualise, to be loaded into the manager. A check is made to
ensure that the Hit falls within the image boundary.

3. Generate the Mouse Trail (GenerateTrail) - During this final stage, the
Mouse Trail itself is created. The process consists of drawing a successive
number of lines between each point.

9.3 Design Decisions

There were no noteworthy design decisions made for the MouseTrail component.

27

Figure 9.1: The UML diagram for the MouseTrail Component.

28

10 SoundPlayer

Namespace
• Pingar.SoundPlayer

Key Files
• USS/SoundPlayer/FFTDataSize.cs
• USS/SoundPlayer/ISoundPlayer.cs
• USS/SoundPlayer/IWaveformPlayer.cs
• USS/SoundPlayer/WaveFormTimeline.cs

10.1 Purpose

The SoundPlayer component is responsible for providing a visualisation of the audio
recording track associated with the user study. The component must also provide a
user interface which allows the Researcher to pause and play the audio track.

10.2 Design

The SoundPlayer component has a fairly simple design and is intended to be in-
cluded within a WPF application. From the UML diagram representing the com-
ponent, shown in Figure 10.1, we see that the majority of the component’s logic
occurs within a single class WaveformTimeline. The component was designed
to integrate with WPF applications using the MVVM design pattern. As such there
are many dependency properties which an application can hook into and utilise. For
the most part however, using the class is fairly straightforward and requires only
one single method call to setup the component. That method is - RegisterSound-
Player, which takes a parameter of type ISoundPlayer, which is an interface
type representing an audio playing engine.
The WaveformTimeline is self managing and calculates the waveform visualisa-
tion when a track is loaded into the object. The remaining data structure - FFT-
DataSize is an enumeration value that is used when calculating the amplitude of
the waveform.

29

This component is based on the open source project WPF Sound Visualization Lib-
rary (http://wpfsvl.codeplex.com/), but has been significantly re-written to handle
multiple instances of the visualisation being open at once, along with other minor
alterations.

10.3 Design Decisions

The primary design decision made here was the approach taken for data binding
in the component. We followed standard MVVM practices here to ensure the com-
ponent integrates easily into existing WPF applications. Lesser used, but simpler
patterns, such as MVC and MVP, could have been used to simplify the development
of the component, but could introduce additional integration complexity.

30

http://wpfsvl.codeplex.com/

Figure 10.1: The UML diagram for the SoundPlayer Component.
31

	Contents
	1 Introduction
	2 System Overview
	3 Data Abstraction Layer (DAL)
	3.1 Purpose
	3.2 Design
	3.3 Design Decisions

	4 Setup
	4.1 Purpose
	4.2 Design
	4.3 Design Decisions

	5 Browser
	5.1 Purpose
	5.2 Design
	5.3 Design Decisions

	6 Collectors
	6.1 Purpose
	6.2 Design
	6.3 Design Decisions

	7 Visualiser
	7.1 Purpose
	7.2 Design
	7.3 Design Decisions

	8 Heatmap
	8.1 Purpose
	8.2 Design
	8.3 Design Decisions

	9 MouseTrail
	9.1 Purpose
	9.2 Design
	9.3 Design Decisions

	10 SoundPlayer
	10.1 Purpose
	10.2 Design
	10.3 Design Decisions

