
Chapter 3

Definite Clause Grammars for NL

In this chapter we look at a couple of simple examples of solving some NL problems using
DCGs. The first shows how noun-verb agreement can be achieved using the variables which
can appear in non-terminals in DCGs. Only the present tense will be illustrated. We then
consider the problem of translating from one language to another. Here a sentence in
French is parsed/recognised and at the same time the English translation is constructed in
one of the variables.

We begin with a general introduction to the syntax and translation of DCG in Prolog.
Most versions of Prolog have the capability of defining languages and operating on them
by means of definite clause grammars.

These types of grammars are similar to cfgs but are strictly more powerful as they do
have some context sensitive features.

3.1 Simplest Form

The most basic form of dcgs are essentially the same as cfgs. We give an example to
illustrate this. Once the rules are presented to the Prolog interpreter they are translated
into pure Prolog clauses. If a listing is performed then the translations can be seen.

3.1.1 Example

Here we have a grammar to recognise various forms of numbers. Notice how close it is to
the normal cfg definition.

digit --> [0]|[1]|[2]|[3]|[4]|

[5]|[6]|[7]|[8]|[9]. % a digit is in 0-9

nat num --> digit. % a natural number is a

nat num --> digit,nat num. % sequence of digits

int --> nat num. % an integer is a natural number

21

int --> sign,nat num. % possibly with a sign

real --> int. % a real is given in normal

real --> int,[’.’],nat num. % decimal notation

real --> sign,[’.’],nat num.

sign --> [-]|[+].

The objects inside []’s are terminal elements of the language, the other identifiers play the
role of non-terminals.

We can use ‘|’ to separate alternatives on the rhs of a rule or give them as separate
rules.

The above is translated into the following Prolog clauses

nat num(A, B) :-

digit(A, B).

nat num(A, B) :- digit(A, C),

nat num(C, B).

sign(A, B) :-

(’C’(A, -, B) |

’C’(A, +, B)).

real(A, B) :-

int(A, B).

real(A, B) :-

int(A, C),

’C’(C, ’.’, D),

nat num(D, B).

real(A, B) :-

sign(A, C),

’C’(C, ’.’, D),

nat num(D, B).

int(A, B) :-

nat num(A, B).

int(A, B) :-

sign(A, C),

nat num(C, B).

digit(A, B) :-

(’C’(A, 0, B) |

’C’(A, 1, B) |

’C’(A, 2, B) |

’C’(A, 3, B) |

22

’C’(A, 4, B) |

’C’(A, 5, B) |

’C’(A, 6, B) |

’C’(A, 7, B) |

’C’(A, 8, B) |

’C’(A, 9, B)).

If we take the clause nat num(A,B), then the interpretation of this predicate is that the
sequence of elements in B is an end part of A, and that the sub-sequence of A obtained by
cutting off B satisfies the definition of natural number. In other words we are essentially
using the pair (A,B) as a difference list.

So for example nat num([1,2,3],[]) is true.
More generally so too is nat num([1,2,3|X],X) for any X. The special built in predicate
’C’ is used for recognising the terminals and ’C’(X,Terminal,Y) means that Terminal

is the head of X and it’s tail is Y — as if it were defined as ’C’([X|Xs],X,Xs).
To make the above easier to use we could write a procedure which would convert a

number in normal representation into a sequence of the separate symbols i.e. ‘+123’

would be converted to the list [+,1,2,3] and ‘1.23’ would be converted to [1,’.’,2,3]

etc. Note it is essential to quote the ’.’ otherwise Prolog will take it as a terminator for
a Prolog clause and so give an error. Also if the number contains a sign it must be quoted
as name requires an atom and +123 for example is not an atom (as begins with ’+’).

convert to list(Atom,Lst):-

name(Atom,AtomLst),

% convert to list of ascii numbers

list to vals(AtomLst,Lst).

ascii to char(Asc,Chr) :-

name(Chr,[Asc]).

list to vals([],[]). % apply down a list

list to vals([H|T],[HV|TV]) :-

ascii to val(H,HV),

list to vals(T,TV).

Instead of using the translated predicates to recognise elements of a language we can also
use the built in predicate phrase. phrase(NT,Lst) means Lst is generated by the non-
terminal NT. e. g. phrase(real,[1,2,’.’,4,5]) is true.

Now the above grammar allows numbers with leading zeroes such as 003. It is not too
difficult to alter the grammar by introducing new non-terminals to reject such numbers.
The changes are as follows:

23

nonz digit --> [1]|[2]|[3]|[4]|[5]|

[6]|[7]|[8]|[9]. % a nonz digit is in 1-9

digit --> [0]|nonz digit.

red nat num -->digit|nonz digit,nat num.

red int --> red nat num|sign,red nat num.

red real --> red int | red int,[’.’],nat num.

This will then return false for phrase(red nat num,[0,0,2,3]) but true for phrase(nat num,[0,0,1,2

3.2 More Complex Examples

Dcgs also have the facility of embedding Prolog code in their bodies. This is achieved by
placing the required code in {}. Anything inside {} is then left unaltered by the interpreter.
Parameters can also appear as arguments to the non-terminal symbols so that results can
be returned as a side effect to the language recognition or used in further calculations.

3.2.1 Example

We add a parameter to the previous example so that after recognising a correct number it
will contain the value of that number. We also need to carry how many digits appear in
the number.

e. g. phrase(nat num(N),[1,2,3,1]) will instantiate the variable N to the value 1231

We shall not bother with the reduced form but take the original grammar.

digit(0) --> [0]. % a digit is in 0-9

digit(1) --> [1].

digit(2) --> [2].

digit(3) --> [3]. % etc
...

digit(9) --> [9].

nat num(N,1) --> digit(N). % a natural number is a

%sequence of digits

nat num(N,ND) --> digit(D),nat num(N2,ND1),

% ND is the number of digits

{plus(ND1,1,ND),
power ten(D,ND1,P),

plus(P,N2,N)}.

24

int(N,D) --> nat num(N,D). % an integer is a natural number

% possibly with a sign

int(N,D) --> [+],nat num(N,D).

int(N,D) --> [-],nat num(N1,D),

{ N is - N1}.

real(R) --> int(R,). % a real is given in normal decimal notation

real(R) --> int(I,),[’.’],nat num(N,ND),

{neg power ten(ND,InvP),

(I >= 0 -> R is I + N * InvP;

R is I - N * InvP) }.

real(R) --> [+],[’.’],nat num(N,D),

{ neg power ten(D,InvP),

R is N * InvP }.

real(R) --> [-],[’.’],nat num(N,D),

{ neg power ten(D,InvP),

R is - N * InvP }.

power ten(D,0,D) :-!.

power ten(D,E1,P) :-

E1 >0,

plus(E,1,E1),

power ten(D,E,P1),

P is P1 * 10,!.

neg power ten(0,1):-!.

neg power ten(N,P):-

N > 0,

succ(N1,N),

neg power ten(N1,P1),

P is P1/10 .

A call of for example real(R,[-,2,3,’.’,4,5],[]) returns true and instantiates R to the
real number -23.45.

A call of phrase(int(N,D),[-,1,2,3]) instantiates N to the number -123 and D, the
number of digits, to 3.

25

3.2.2 Example

% parse simple english sentence

% for time being just present as a list of identifiers

% e.g. [the,big,cat,kicks,the,black,dog]

% first we have a straight forward generator

% will not repeat adjective like big big girl!

% Also check whether we need an ’an’ or an ’a’.

adjnounph(CV) --> noun(CV).

adjnounph(CV) --> adjective(CV,Adj),noun().

adjnounph(CV) --> adjective(CV,Adj),adjective(,Adj2),

{Adj \== Adj2},
noun() .

nounphrase --> det(CV),adjnounph(CV).

sentence --> nounphrase,verb,nounphrase.

% now some explicit examples

det(cons) --> [the]|[a].

det(vowel) --> [an].

verb --> [hit]|[kicks]|[kisses].

noun(cons) --> [cat]|[boy]|[girl].

noun(vowel)--> [owl]|[ox].

adjective(cons,big) --> [big].

adjective(cons,black) --> [black].

adjective(cons,brown) --> [brown].

adjective(cons,tabby) --> [tabby].

adjective(vowel,awful) --> [awful].

adjective(vowel,awesome) --> [awesome].

The above will now correctly recognise an awful owl hit an ox and reject a awesome

cat kisses a awful girl!

26

