TeamSpeak 3 Server
SDK Developer Manual

Revision 2012-07-19 12:50:53
Copyright © 2007-2012 TeamSpeak Systems GmbH

Table of Contents

160070V 1T | TSP UPPPTTRUPPIN 2
LICENSE @OMEEITIENL ... eiite et eeit ettt ettt ettt ettt e e ettt e e ettt e e ettt e e et ettt e e ettt e e e et et e e e et bt e et e nt e e e ebbnaeeaees 2

T gLu oo (8 oi (oo H PP UPPPT 5
SYSEEM FEOUITEIMIENTS ...ttt ettt ettt ettt e et e ettt oottt e etttk e et etk e e et e b b e et ekt e et e b e e e e et e e e e et e e e e et as 5
L0 1S [PPN 5
Calling Server 1 FUNCLIONSottt e e et e et eeeaa s 6
TaTLAE] oo PO SPPPTR 6
The callback MEChANISM ... et e et e e 7
QUENYING the TTDrary VEISION ...ttt et e et e et et e e et et e e e e et e e e e eaa s 8
SNULLING GOWIN <.ttt e ettt e ettt ht e e e et bt e et e e bt e e et ebe e e e eebt e e e eeba e e e eebaaeeene 9
=g (o g 7= 0o 11 o PP PPPPT 10
Query virtual servers, clients and ChaNNEIS ..o e e 11
Create and SIOP VIFTUBL SEIVEFS ittt ettt ettt e e et e ettt e e ettt e et et b e e e e et n e e e esbeneeeeabnnaeeenes 14
Retrieve and StOre INFOMMEBLION ittt ettt e e e et e et et e e e e et e e e e et e e e eaba s 16
ClIENT TNFOMMELION ... e e ettt ettt e et et et e et r et e et r e et et e e e e abe e e e enaans 16
QuErY ClIeNt INFOMMIBLTON ittt et e et e e e b e e eeeans 16

Setting Client INFOMMELION i ettt e et e e et e e e 19

K o1 g T ST UPP PP UPPPTTRPPIN 21

Channel INFOMMIBLTON ... e et e ettt e e ettt e e e e et e e e e et e e e enbanaeeene 22
Query channel INFOMMIBLIONcouuiei ittt et e ettt e e et et e e e et e e e e et reeeentaaeeeee 22

Setting channel INFOrMELIONooiiii e e 25

S AV T o1 Fo g0 0T= 1o TP PRSPPI 26
QUENY SEIVEN INFOMMEBLION ... ieeet ettt ettt et e ettt e et et e e e et e e e et e e e ebe s 26

Setting SErVEr INFOMMELIONiiiiii ettt e e e e e e e ae s 28

Bandwidth INFOIMELIONiieit e et ettt e et et e et et e et e et aeeeaaa e e eenaes 29
Channel and client ManiPUIBLTONoouuiiiii ettt ettt e et e e e e b e eeene s 30
Creating @ NEW ChANNEL .. .ot e et e et e e ettt e ettt e et eet e e e e ebb e reeeenbneeeenanaeeeee 30
DElEliNG @ CRANNEL ...t e e ettt et e et e et b e e e et eeeeba s 31
MOVING 8 CRENNEL ... ettt e et e e et e e e et e e et et e e et et e e e e nba s 32
IMOVING CHIENES ..ot ettt e e ettt e ettt e e et e bt e e et et r e e ettt reeeesbn s eeeenbnaaeeees 33
Y 1 PP 33
L0 o] g 1= 0ot 0/ o (o o EO U UPPPT PR SP PP 40
MISCEITANEOUS TUNCLIONSoeveee ettt ettt e e ettt e ettt et ettt e e e ettt s e e et ete e e e eebe e eeeebeaeaees 42
A O PSSR 43
| cannot start multiple server processes? | cannot start more than one virtual Server?..........covvveeieviiviiineeinneen, 43

How can | configure the maximum nuMBEr Of SIOIS?oiiiii e 43

| get "Accounting | | sid=1 is running" "initializing shutdown" iNthe 10gccooviiiii e, 43

How to implement a name/password authentiCation?voeeuuiiiiii e 44
10 (= PSP SPPRTR 45

TeamSpeak 3 Server
SDK Developer Manual

Copyright
Copyright © 2007-2012 TeamSpeak Systems GmbH. All rights reserved.

TeamSpeak Systems GmbH
Soiernstrasse 1

82494 Krin

Germany

Visit TeamSpeak-Systems on the web at www.teamspeak.com [http://www.teamspeak.com]

License agreement

TeamSpeak 3
LICENSE AGREEMENT
October 25th, 2007

THISISA LEGAL AGREEMENT between "you," the company or end user of TeamSpeak 3 brand software, and TeamSpeak
Systems GmbH, a Kriin, Germany company hereafter referred to as " TeamSpeak Systems”.

Use of the software you are about to install indicates your acceptance of these terms. Y ou also agree to accept these terms by
soindicating at the appropriate screen, prior to the download or installation process. Asused in this Agreement, the capitalized
term " Software" means the TeamSpeak 3 voice over IP (VolP) communication software together with any and all enhance-
ments, upgrades, and updates that may be provided to you in the future by TeamSpeak Systems. IF YOU DO NOT AGREE
TO THESE TERMS AND CONDITIONS, YOU SHOULD SO INDICATE BY CONTACTING TEAMSPEAK SYSTEMS
AND PROMPTLY DISCONTINUE THE INSTALLATION PROCESS AND USE OF THIS SOFTWARE.

Ownership

The Software and any accompanying documentation are owned by TeamSpeak Systems and ownership of the Software shall
at all times remain with TeamSpeak Systems. Copies are provided to you only to allow you to exercise your rights under this
Agreement. This Agreement does not constitute a sale of the Software or any accompanying documentation, or any portion
thereof. Without limiting the generality of the foregoing, you do not receive any rightsto any patents, copyrights, trade secrets,
trademarks or other intellectual property rights relating to or in the Software or any accompanying documentation. All rights
not expressly granted to you under this Agreement are reserved by TeamSpeak Systems.

Grant of License Applicable To TeamSpeak 3

Subject to the terms and conditions set out in this Agreement, TeamSpeak Systems grants you a limited, nonexclusive, non-
transferable and nonsublicensable right to use the Software called "TeamSpeak 3" solely in accordance with the following
terms and conditions:

1. Use of TeamSpeak 3. Y ou may use TeamSpeak 3 on multiple computers owned, leased or rented by you, your company, or
business entity; however, you are the only individual, company, or business entity with the right to use your licensed copy(ies)
of TeamSpeak 3. All copies of TeamSpeak 3 must include TeamSpeak Systems' copyright notice.

2. Distribution Prohibited. Y ou may not distribute copies of TeamSpeak 3 for use by anyone other than you, your company,
or business entity. Distribution of TeamSpeak 3 by you to third partiesis hereby expressly prohibited.

3. Fees. Asof thedatelisted abovefor thisLicense Agreement, TeamSpeak 3isina"pre-release” stage. Feesand licensing costs
will be determined when the final version of the product is released or an agreed upon commencement date for commercial
use of the Software isinitiated.

http://www.teamspeak.com
http://www.teamspeak.com

TeamSpeak 3 Server
SDK Developer Manual

4. Termination. TeamSpeak Systems may terminate your TeamSpeak 3 license at any time, for any reason or no reason.
TeamSpeak Systems may also terminate your TeamSpeak 3 license if you breach any of the terms and conditions set forth
in this Agreement. Upon termination, you shall immediately destroy all copies of TeamSpeak 3 and any accompanying files
or documentation in your possession, custody or control.

5. Support. TeamSpeak Systems will provide you with support services related to TeamSpeak 3 for a period that begins on
the date TeamSpeak 3 is delivered to you, and ends upon the termination of this Agreement.

6. Upgrades. TeamSpeak Systemswill provide you with upgrades to TeamSpeak 3 for a period that begins on the date Team-
Speak 3isdelivered to you. Such upgrades will be released only by TeamSpeak Systems for the purpose of improving Team-
Speak 3 software. TeamSpeak Systems has no obligation to provide you with any upgrades that are not released for general
distribution to TeamSpeak Systems' other licensees. Nothing in this Agreement shall be construed to obligate TeamSpeak
Systems to provide upgrades to you under any circumstances.

Prohibited Conduct
Y ou represent and warrant that you will not violate any of the terms and conditions set forth in this Agreement and that:

Y ou will not, and will not permit othersto: (i) reverse engineer, decompile, disassemble, derive the source code of, modify, or
create derivative works from the Software; or (ii) use, copy, modify, alter, or transfer, electronically or otherwise, the Software
or any of the accompanying documentation except as expressly permitted in this Agreement; or (iii) redistribute, sell, rent,
lease, sublicense, or otherwise transfer rights to the Software whether in a stand-alone configuration or as incorporated with
other software code written by any party except as expressly permitted in this Agreement.

Y ou will not use the Software to engage in or allow othersto engage in any illegal activity.

You will not engage in use of the Software that will interfere with or damage the operation of the services of third parties by
overburdening/disabling network resources through automated queries, excessive usage or similar conduct.

Y ou will not usethe Software to engagein any activity that will violate the rights of third parties, including, without limitation,
through the use, public display, public performance, reproduction, distribution, or modification of communicationsor materials
that infringe copyrights, trademarks, publicity rights, privacy rights, other proprietary rights, or rights against defamation of
third parties.

Y ou will not transfer the Software or utilize the Software in combination with third party software authored by you or others
to create an integrated software program which you transfer to unrelated third parties.

Upgrades, Updates And Enhancements

All upgrades, updates or enhancements of the Software shall be deemed to be part of the Software and will be subject to
this Agreement.

Disclaimer of Warranty

THE SOFTWARE ISPROVIDED ON AN "ASI1S' BASIS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIESTHAT IT IS FREE OF DEFECTS, VIRUS FREE,
ABLE TO OPERATE ON AN UNINTERRUPTED BASIS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LI-
CENSE AND AGREEMENT. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL TEAMSPEAK SYSTEMS
BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

TeamSpeak 3 Server
SDK Developer Manual

THE USE OF OR INABILITY TO USE THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOST PROFITS, LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF ADVISED OF THE POSSIBILITY THERE-
OF, AND REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON
WHICH THE CLAIM ISBASED. IN ANY CASE, TEAMSPEAK SYSTEMS COLLECTIVE LIABILITY UNDER ANY
PROVISION OF THIS LICENSE SHALL NOT EXCEED IN THE AGGREGATE THE SUM OF THE FEES (IF ANY)
YOU PAID FOR THIS LICENSE.

Legends and Notices

Y ou agree that you will not remove or alter any trademark, logo, copyright or other proprietary notices, legends, symbols or
labelsin the Software or any accompanying files or documentation.

Term and Termination

This Agreement is effective upon your acceptance as provided herein and payment of the applicable license fees (if any), and
will remain in force until terminated. Y ou may terminate the licenses granted in this Agreement at any time by contacting
TeamSpeak Systemsin writing, and destroying the Software and any accompanying files or documentation, together with any
and all copies thereof. The licenses granted in this Agreement will terminate automatically if you breach any of its terms or
conditions or any of the terms or conditions of any other agreement between you and TeamSpeak Systems. Upon termination,
you shall immediately destroy the original and all copies of the Software and any accompanying documentation, or return
them to TeamSpeak Systems.

Software Suggestions

TeamSpeak Systems welcomes suggestions for enhancing the Software and any accompanying documentation that may re-
sult in computer programs, reports, presentations, documents, ideas or inventions relating or useful to TeamSpeak Systems
business. Y ou acknowledge that all title, ownership rights, and intellectual property rights concerning such suggestions shall
become the exclusive property of TeamSpeak Systems and may be used for its business purposesin its sol e discretion without
any payment or accounting to you.

Miscellaneous

This Agreement constitutes the entire agreement between the parties concerning the Software, and may be amended only by a
writing signed by both parties. This Agreement shall be governed by the laws of Kriin, Germany, excluding its conflict of law
provisions. All disputes relating to this Agreement are subject to the exclusive jurisdiction of the courts within Germany and
you expressly consent to the exercise of personal jurisdiction in the courts of Germany in connection with any such dispute.
This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. If
any provision in this Agreement should be held illegal or unenforceable by a court of competent jurisdiction, such provision
shall be modified to the extent necessary to render it enforceable without losing its intent, or severed from this Agreement if
no such modification is possible, and other provisions of this Agreement shall remain in full force and effect. A waiver by
either party of any term or condition of this Agreement or any breach thereof, in any one instance, shall not waive such term
or condition or any subsequent breach thereof.

TeamSpeak 3 Server
SDK Developer Manual

Introduction

TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generally re-
garded as the leading Vol P system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit alows the easy integration of the TeamSpeak client and server technology
into own applications.

This document describes server-side programming with the TeamSpeak 3 SDK. The SDK user will be able to create a custom
TeamSpeak 3 server binary using the provided server APl and library.

System requirements

For developing third-party clients with the TeamSpeak 3 Server Lib the following system requirements apply:
* Windows
Windows 2000, XP, Vista (32- and 64-hit)
* Mac OS X
Mac OS X 10.4 and above on Intel and PowerPC
* Linux

Any recent Linux distribution with libstdc++ 6. Both 32- and 64-bit are supported.

2 | mportant
The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libariesis cdecl. You
must not use another calling convention, like stdcall on Windows, when declaring function pointersto the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Usage

All therequired files are located in the bi n directory of the TeamSpeak 3 SDK distribution.

2 | mportant

Thelicensefilel i censekey. dat needsto belocated in the same folder as your server executable.

If no license key is present, the server will run with the following limitations:
» Only one server process per machine

e Only onevirtual server per process

e Only 32 dlots

For more detailed information about licensing of TeamSpeak 3 servers or to obtain a license, please contact
<sal es@ritoncia. conp.

TeamSpeak 3 Server
SDK Developer Manual

Calling Server lib functions
Server Lib functions follow acommon pattern. They always return an error code or ERROR_ok on success. If thereisaresult

variable, it is adwaysthe last variable in the functions parameters list.

ERROR t s3server _FUNCNAME(argl, arg2, ..., &esult);

Result variables should only be accessed if the function returned ERROR _ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Server Lib function.

int result;

if(ts3server _XXX(argl, arg2, ..., &esult) == ERROR ok) {
/* Use result variable */

} else {

/* Handl e error, result variable is undefined */

}

If the result variable is a pointer type (C strings, arrays etc.), the memory is allocated by the Server Lib function. In that case,
the caller has to release the allocated memory later by usingt s3ser ver _freeMenory. It isimportant to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, theresult variableisuninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3server _XXX(argl, arg2, ..., &esult) == ERROR ok) {

/* Use result variable */

ts3server _freeMenory(result); /* Release result variable */
} else {

/* Handle error, result variable is undefined. Do not access or release it. */
}

§ Note

Server Lib functions are thread-safe. It is possibleto accessthe Server Lib from several threads at the sametime.
Initializing
When starting the server application, initialize the Server Lib with

unsi gned i nt ts3server _initServerLib(functionPointers, usedLogTypes, | ogFil eFol der);

const struct ServerlLi bFunctions* functionPointers;
i nt usedLogTypes;
const char* | ogFil eFol der;

§ Note
This function must not be called more than once.

TeamSpeak 3 Server
SDK Developer Manual

Parameters
e functionPointers

Callback function pointers. See below.
e usedLogTypes

Defines the log output types. The Server Lib can output log messages to afile (located in the | ogs directory relative to
the server executable), to stdout or to user defined callbacks. If user callbacks are activated, the onUser Loggi ngMes-
sageEvent event needs to be implemented.

Available values are defined by the enum LogTypes (see publ i c_defi ni ti ons. h):

enum LogTypes {

LogType_NONE = 0x0000,
LogType_FI LE = 0x0001,
LogType_CONSOLE = 0x0002,
LogType_USERLOGA NG = 0x0004,
LogType_NO _NETLOGG NG = 0x0008,
LogType_DATABASE = 0x0010,

b
Multiple log types can be combined with abinary OR. If only LogType_NONE is used, local logging is disabled.

E Note
Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

E Note
LogType_NO _NETLOGAE NGis no longer used. Previously this controlled if the Server Lib would send
warning, error and critical log entriesto awebserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType_DATABASE isunused in SDK builds.
e | ogFi | eFol der

L ocation wherethe logfiles produced if filelogging is enabled will be saved to. PassNULL for the default behaviour, which
istouseafolder called | ogs in the current working directory.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

The callback mechanism

The communication from the Server Lib to the server application takes place using callbacks. The server application has to
define a series of function pointers using the struct ServerLibFunctions (seeser ver | i b. h). These callbacks are used to let
the server application hook into the library and receive notifaction on certain actions.

A callback examplein C:

static void nmy_onCient Connected_cal | back(ui nt64 serverl D, anylD clientlD, uint64 channellD,
unsigned int* renoveCientError) {
printf("Cdient % connected on virtual server % joining channel %", clientlD, serverlD, channellD);

TeamSpeak 3 Server
SDK Developer Manual

}

C++ developers can also use static member functions for the callbacks.

Beforecallingt s3ser ver _i ni t Ser ver Li b, create an instance of struct ServerLibFunctions, initialize all function point-
erswith NULL and point the structs function pointers to your implemented callback functions:

unsigned int error;

/* Create struct */
Server Li bFuncti ons sl Funcs;

/* Initialize all function pointers with NULL */
menset (&sl Funcs, 0, sizeof (struct ServerlLibFunctions));

/* Assign those function pointers you inplenented */

sl Funcs. onVoi ceDat aEvent = my_onVoi ceDat aEvent _cal | back;

sl Funcs. onCl i ent St art Tal ki ngEvent my_onCl i ent St art Tal ki ngEvent _cal | back;
sl Funcs. onCl i ent St opTal ki ngEvent my_onCl i ent St opTal ki ngEvent _cal | back;
sl Funcs. ond i ent Connect ed my_ondCl i ent Connect ed_cal | back;

sl Funcs. ond i ent Di sconnect ed my_ondC i ent Di sconnect ed_cal | back;

sl Funcs. ond i ent Moved my_onCl i ent Moved_cal | back;

sl Funcs. onChannel Cr eat ed my_onChannel Cr eat ed_cal | back;

sl Funcs. onChannel Edi t ed my_onChannel Edi t ed_cal | back;

sl Funcs. onChannel Del et ed my_onChannel Del et ed_cal | back;

sl Funcs. onSer ver Text MessageEvent my_onSer ver Text MessageEvent _cal | back;
sl Funcs. onChannel Text MessageEvent my_onChannel Text MessageEvent _cal | back;
sl Funcs. onUser Loggi ngMessageEvent my_onUser Loggi ngMessageEvent _cal | back;
sl Funcs. onAccount i ngEr r or Event my_onAccount i ngErr or Event _cal | back;

sl Funcs. onCust onPacket Encr ypt Event NULL; // Not used by your application
sl Funcs. onCust onPacket Decr ypt Event NULL; // Not used by your application

/* Initialize library with callback function pointers */
error = ts3server_initServerlLib(&slFuncs, LogType_FILE | LogType_CONSOLE);
if(error !'= ERROR ok) {

printf("Error initializing serverlib: %l\n", error);

(...)

2 | mportant
Aslong asyou initialize unimplemented callbackswith NULL, the Server Libwon't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Server Lib will crash when trying to
cal them.

Theindividual callbacks are described in the chapter Events.

Querying the library version

The Server Lib version can be queried with
unsi gned int ts3server_get ServerlLi bVersion(result);

char** result;

Parameters

e result

TeamSpeak 3 Server
SDK Developer Manual

Address of avariable that receives the serverlib version string, encoded in UTF-8.

A Caution

The result string must be released usingt s3ser ver _freeMenory. If an error has occured, the result string

is uninitialized and must not be released.

To get only the version number, which is a part of the complete version string, as numeric value:
unsi gned int ts3server_get ServerLi bVersi onNunber (result);

ui nt 64* result;

Parameters
e result
Address of avariable that receives the numeric serverlib version.

Both functions return ERROR_ok on success, otherwise an error code as defined inpubl i c_errors. h.

Example code to query the Server Lib version;

unsigned int error;

char* version;

error = ts3server_get ServerLi bVersi on(&version);

if(error = ERROR 0ok) {
printf("Error querying serverlib version: %\n", error);
return;

}
printf("Server library version: %\n", version); /* Print version */
ts3server_freeMenory(version); /* Release string */

Shutting down

Before exiting the application, the Server Lib should be shut down with

unsi gned int ts3server_destroyServerLib();

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Any call to Server Lib functions after shutting down has undefined results.

& Caution

Never destroy the Server Lib from within a callback function. This might result in a segmentation fault.

TeamSpeak 3 Server
SDK Developer Manual

Error handling

Each Server Lib function returns either ERROR_ok on success or an error value as defined in publ i c_errors. h if the
function fails.

Thereturned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR _cl i ent _i nval i d_i d.

Example:

unsigned int error;
char* wel coneMsg;

/* wel comeMsg nenory is allocated if error is ERROR ok */
error = ts3server_getVirtual ServerVari abl eAsString(server| D, VI RTUALSERVER WELCOVEMESSAGE, &wel comeMsg);
if(error = ERROR ok) {

/* Handle error */

return;

}

/* Use wel coneMsg. .. */
ts3server _freeMenory(wel coneMsg); /* Release nenory *only* if function did not return an error */

E Note
Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result
variableis undefined.

2 | mportant

Some Server Lib functions dynamically alocate memory which has to be freed by the caler using
t s3server _freeMenory. It isimportant to only access and release the memory if the function returned
ERRCR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
will likely result in a segmentation fault.

See the section Calling Server Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with
unsi gned int ts3server_getd obal Error Message(error Code, error);

unsi gned i nt error Code;
char** error;

Parameters
* error Code
The error code returned from all Server Lib functions.

s error

10

TeamSpeak 3 Server
SDK Developer Manual

Addressof avariablethat receivesthe error message string, encoded in UTF-8 format. Unlessthereturn value of thefunction
isnot ERROR_ok, the string should be released witht s3ser ver _freeMenory.

Example:

unsigned int error;
char* version;

error = ts3server_get ServerLi bVersion(&version); /* Calling sone Server Lib function */
if(error = ERROR 0ok) {
char* errorMsg;
if(ts3server_getd obal Error Message(error, &errorMsg) == ERROR ok) { /* Query printable error */
printf("Error querying client 1D %\n", errorMsg);
ts3server_freeMenory(errorMsg); /* Release nmenory only if function succeeded */

}
}
Query virtual servers, clients and channels

A list of all virtual servers can be queried with:
unsi gned int ts3server_getVirtual ServerList(result);

ui nt 64** resul t;

Parameters
e result

Address of avariable which receives a NULL-terminated array of server IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

§ Note
The default virtual server hasan ID of 1.

A list of all clients currently online on the specified virtual server can be queried with:

unsi gned int ts3server_getCientList(serverlD, result);

ui nt 64 serverl D,
anyl D** result;

Parameters

e serverlD

11

TeamSpeak 3 Server
SDK Developer Manual

ID of the virtual server on which the client list is requested.
* result

Address of avariable which receives a NULL-terminated array of client IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

A list of all channels currently available on the specified virtual server can be queried with:
unsi gned int ts3server_get Channel Li st (serverl D, result);

ui nt 64 serverl D,
ui nt 64** result;

Parameters
* serverlD

ID of the virtual server on which the channel list is requested.
* result

Address of a variable which receives a NULL-terminated array of channel IDs. Unless an error occured, the array should
bereleased witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of all clients currently member of the specified channel:
unsi gned int ts3server_get Channel dientList(serverlD, channellD, result);

ui nt 64 serverl D,
ui nt 64 channel | D;
anyl D** result;

Parameters
e serverlD
ID of the virtual server on which thelist of clientsis requested.

e channel I D

12

TeamSpeak 3 Server
SDK Developer Manual

ID of the specified channel.
* result

Address of avariable which receives aNULL-terminated array of client IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

Query the channel the specified client has currently joined:
unsi gned int ts3server_get Channel O dient(serverlD, clientID, result);

ui nt 64 serverl D,
anyl D clientlD;
ui nt 64* result;

Parameters
e serverlD
ID of the virtual server on which the channel is requested.
* channel I D
ID of the specified client.
* result
Address of avariable which receives the ID of the channel the specified client has currently joined.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Get the parent channel of agiven channel:
unsi gned int ts3server_get Par ent Channel O Channel (server| D, channel ID, result);

ui nt 64 serverl D,
ui nt 64 channel | D;
ui nt 64* result;

Parameters
e serverl D

ID of the virtual server on which the parent channel is requested.

13

TeamSpeak 3 Server
SDK Developer Manual

e channel I D
ID of the channel whose parent channel is requested.
* result

Address of avariable which receives the ID of the parent channel.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Exampleto print alist of all channels on avirtual server:
ui nt 64* channel s;
i f(ts3server_get Channel Li st (serverl D, &channel s) == ERROR ok) {
for(int i=0; channels[i] != NULL; i++) {
printf("Channel ID: %\n", channels[i]);
}

t s3server _freeMenory(channel s);

}

Exampleto print al clients who are member of channel with ID 123:

uint64 channel ID = 123; /* ID in our exanple */
anyl D* clients;

i f(ts3server_get Channel dientList(serverlD, channellD, &clients) == ERROR ok) {

for(int i=0; clients[i] != NULL; i++) {
printf("Cient ID %\n", clients[i]);
}

ts3server _freeMenory(clients);

}

Create and stop virtual servers

A new virtual server can be created within the current server process by calling:

unsigned int t s3server _createVirtual Server (serverPort,

server KeyPair, serverMaxClients, result);

unsi gned int serverPort;

const char* serverlp;

const char* server Nane;

const char* serverKeyPair;
unsi gned int serveraxd i ents;
ui nt 64* result;

Parameters

e serverPort

serverlp, server Nane,

UDP port to be used for the new virtual server. The default TeamSpeak 3 port is UDP 9987.

e serverlp

14

TeamSpeak 3 Server
SDK Developer Manual

IP to bind the virtual server to. Pass“0.0.0.0” to bind the virtual server to all IP addresses.
* server Nane

Name of the new virtual server. This can be later accessed through the virtual server property VI RTUALSERVER_NAME.
* serverKeyPair

Unique keypair of this server. The first time you start this virtual server, pass an empty string, query the keypair with
t s3server _get Vi rtual Server KeyPai r, then save the keypair localy and pass it the next time as parameter to
this function.

* serverMaxCients

Maximum number of clients (“slots’) which can simultaneously be connected to this virtual server.
* result

Address of avariable which receivesthe ID of the created virtual server.

Returns ERROR ok on success, otherwise an error code asdefined in publ i ¢_errors. h. On success, the created virtual
server will be automatically started.

A Caution

Y ou should not create avirtual server with an empty keypair except than thefirst time. If the server should crash,
license problems might result when using “throw-away” keypairs, as the license systems might consider you are
running more virtual serversthan you actualy do.

Instead query the keypair the first time the virtual server was started, save it to afile and reuse it when creating
anew virtual server. Thisway licensing issueswill not occur.

See the server sample which isincluded in the TeamSpeak 3 SDK for an example on how to save and restore
keypairs.

E Note
The TeamSpeak 3 server uses UDP. Support for TCP might be added in the future.

To query the keypair of avirtual server, use:
unsi gned int ts3server_getVirtual ServerKeyPair(serverlD, result);

ui nt 64 serverl D,
char** result;

Parameters

e serverl D

15

TeamSpeak 3 Server
SDK Developer Manual

ID of the virtual server for which the keypair is queried.
e result

Address of avariable that receives a string with the keypair of thisvirtual server. Save the keypair and passit the next time
thisvirtual server is created as parameter tot s3ser ver _creat eVi rt ual Server.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

A virtual server can be stopped with:
unsi gned int ts3server_stopVirtual Server(serverlD);

ui nt 64 serverl D;

Parameters
e serverlD
ID of the virtual server that should be stopped.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Retrieve and store information

The Server Lib stores various pieces of information, which is made available to the custom server. This chapter covers how
to query and store data in the Server Lib.

All strings passed to and from the Server Lib need to be encoded in UTF-8 format.

Client information

Query client information

Information about the clients currently connected to this virtual server can be retrieved and modified. To query client related
information, use one of the following functions. The client isidentified by the parameter cl i ent | D. The parameter f | ag
is defined by the enum ClientProperties.

unsigned int ts3server_getCientVariableAslint(serverlD, clientlD, flag, result);

ui nt 64 serverlD;

anyl D clientlD
ClientProperties flag;
int* result;

16

TeamSpeak 3 Server
SDK Developer Manual

unsi gned int ts3server_getdientVariableAsString(serverlD, clientlD, flag, result);

ui nt 64 serverlD;

anyl D clientlD;
ClientProperties flag;
char** result;

Parameters
» serverlD
The ID of the virtual server on which the client property is queried.
e clientlD
ID of the client whose property is queried.
- flag
Client propery to query, see below.
* result

Address of avariable that receives the result value asint or string, depending on which function is used. In case of a string,
memory must bereleased usingt s3ser ver _freeMenory, unless an error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum ClientProperties:

enum Cl i ent Properties {

CLI ENT_UNI QUE_I DENTI FI ER = 0, /lautonatically up-to-date for any client "in view', can be used

//to identify this particular client installation

CLI ENT_NI CKNANMNE, //autonatically up-to-date for any client "in view

CLI ENT_VERSI ON, //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_PLATFORM //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_FLAG_TALKI NG, /lautonatically up-to-date for any client that can be heard
/1 (in room/ whisper)

CLI ENT_I NPUT_MJTED, //autonatically up-to-date for any client "in view', this clients
/1 mi crophone nute status

CLI ENT_QUTPUT_MJTED, //autonatically up-to-date for any client "in view', this clients
/I headphones/ speakers nute status

CLI ENT_QUTPUTONLY_MJTED //autonatically up-to-date for any client "in view', this clients
/I headphones/ speakers only nute status

CLI ENT_| NPUT_HARDWARE, //autonatically up-to-date for any client "in view', this clients
/1 m crophone hardware status (is the capture device opened?)

CLI ENT_QUTPUT_HARDWARE, //autonatically up-to-date for any client "in view', this clients
/ I headphone/ speakers hardware status (is the playback device opened?)

CLI ENT_| NPUT_DEACTI VATED, /lonly usable for ourself, not propagated to the network

CLI ENT_I DLE_TI ME, /linternal use

CLI ENT_DEFAULT_CHANNEL, /lonly usable for ourself, the default channel we used to connect

//on our |ast connection attenpt
CLI ENT_DEFAULT_CHANNEL_PASSWORD, / /i nt ernal use
CLI ENT_SERVER _PASSWORD, /linternal use
CLI ENT_META_DATA, /lautonatically up-to-date for any client "in view', not used by

17

TeamSpeak 3 Server
SDK Developer Manual

/| Teantpeak, free storage for sdk users

CLI ENT_I S_MJTED, //only make sense on the client side locally, "1" if this client is
//currently nuted by us, "0" if he is not

CLI ENT_I S_RECORDI NG, //automatically up-to-date for any client "in view

CLI ENT_VCOLUME_MODI FI CATOR, //internal use

CLI ENT_ENDVARKER,

CLI ENT_UNI QUE_I DENTI FI ER

String: Unique ID for this client. Stays the same after restarting the application, so you can use this to identify individual
USers.

CLI ENT_NI CKNANVE

Nickname used by the client

CLI ENT_VERSI ON

Application version used by this client.

CLI ENT_PLATFORM

Operating system used by this client.

CLI ENT_FLAG TALKI NG

Set when the client is currently talking. Always available for visible clients.
CLI ENT_I NPUT_MJTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum Mutel nputStatus.
CLI ENT_OUTPUT_MUTED

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

CLI ENT_OQUTPUTONLY_MJTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
available for visible clients.

CLI ENT_| NPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum Hardwarel nputStatus.
CLI ENT_OUTPUT _HARDWARE

Set if the clients playback device is not available. Possible values are defined by the enum HardwareOutputStatus.
CLI ENT_I NPUT_DEACTI VATED

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only available to client, not propagated to the server.

CLI ENT_I DLE_TI ME

18

TeamSpeak 3 Server
SDK Developer Manual

Timethe client has beenidle.
« CLI ENT_TYPE

Indicatesif the given client isanorma TeamSpeak 3 client or a connection established by the ServerQuery application.
e CLI ENT_DEFAULT_CHANNEL

CLI ENT_DEFAULT_CHANNEL _PASSWORD

Default channel name and password used in the last t s3server _st art Connecti on call. Only available for own
client.

« CLI ENT_META DATA
Not used by TeamSpeak 3, offers free storage for SDK users.
« CLIENT_I'S MUTED
Indicates a client has been locally muted witht s3ser ver _request Mut ed i ent s. Client-side only.
« CLI ENT_| S _RECORDI NG
Indicates aclient is currently recording all voice datain his channel.
e CLI ENT_VOLUME_MODI FI CATCR
The client volume modifier set by t s3cl i ent _set d i ent Vol umeModi fi er.

Generally al types of information can be retrieved as both string or integer. However, in most cases the expected datatypeis
obvious, like querying CL1 ENT_ NI CKNAME will clearly require to store the result as string.

Example: Query nickname of client with ID 123:

unsigned int error;
anylD clientID = 123; /* Client IDin our exanple */
char* ni cknamne;

if((error = ts3server_getCientVariabl eAsString(serverlID, clientlD, CLIENT_N CKNAME, &nicknane)) != ERROR ok) {
printf("Error querying client nicknane: %\n", error);
return;

}

printf("dient nickname is: %\n", nicknane);
t s3server _freeMenory(ni cknane);

Setting client information

Client information can be modified with

unsigned int ts3server_setCientVariableAslint(serverlD, clientlD, flag, value);
ui nt 64 serverl D,

anyl D clientlD;

CientProperties flag;
i nt val ue;

19

TeamSpeak 3 Server
SDK Developer Manual

unsigned int ts3server_setClientVariableAsString(serverlD, clientlD, flag, value);

ui nt 64 serverlD;

anyl D clientlD;
CientProperties flag;
const char* val ue;

Parameters
* serverlD
ID of the virtual server on which the client property should be changed.
e clientlD
ID of the client whose property should be changed.
« flag
Client propery to query, see above.
* val ue
Vauethe client property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

f | mportant

After modifying one or more client variables, you must flush the changes.
unsigned int ts3server_flushCientVariable(serverlD, clientlD);
ui nt 64 serverl D,
anyl D clientlD;
The idea behind flushing is, one can modify multiple values by callingt s3server _set C i ent Vari abl eAsStri ng

andt s3server_set i ent Vari abl eAsl nt and then apply all changesin one step.

For example, to change the nickname of the client with ID 55 to “ Joe”:
anylD clientID =55; /* Cient IDin our exanple */

/* Modifiy data */

if(ts3server_setdientVariabl eAsString(serverl D, clientlD, CLIENT_N CKNAME, "Joe") != ERROR ok) {
printf("Error setting client nicknane\n");
return;

}

/* Flush changes
if(ts3server_flushCientVariable(serverlD, clientlD) != ERROR ok) {
printf("Error flushing client variable\n");

20

TeamSpeak 3 Server
SDK Developer Manual

}
Example for applying two changes:
anylD clientID = 66; /* Client IDin our exanple */

/* Modify data 1 */

if(ts3server_setCientVariabl eAslnt(scHandl erI D, clientlD, CLIENT_AWAY, AWAY ZZ7) != ERROR ok) {
printf("Error setting away node\n");
return;

}

/* Modify data 2 */
if(ts3server_setCientVariabl eAsString(scHandl erI D, clientlD, CLIENT_AWAY_MESSAGE, "Lunch") != ERROR ok) {
printf("Error setting away nessage\n");

return;

}

/* Flush changes */

if(ts3server_flushCientVariable(scHandl erI D, clientlD) != ERROR ok) {
printf("Error flushing client variable");

}

Whisper lists

A client with awhisper list set can talk to the specified clientsand channels. Whisper lists can be defined for individual clients.
A whisper list consists of an array of client IDs and/or an array of channel 1Ds.

unsi gned int ts3server_setCientWisperList(serverlD, clID, channellD, clientlD);
ui nt 64 serverlD;
anyl D cl I D

const ui nt64* channel | D;
const anylD* clientlD;

Parameters
* serverlD
ID of the virtual server on which the whisper list is set.
«clID
ID of the client whose whisper list is set.
« channel I D
NULL-terminated array of channel IDs. These channels will be added to the clients whisper list.
Pass NULL for an empty list.
e clientlD
NULL-termianted array of client IDs. These clients will be added to the clients whisper list.

Pass NULL for an empty list.

21

TeamSpeak 3 Server
SDK Developer Manual

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Channel information

Query channel information

Querying and modifying information related to channelsis similar to dealing with clients. The parameter f | ag is defined by
the enum Channel Properties. The functionsto query channel information are:

unsi gned int ts3server_get Channel Vari abl eAsl nt (server| D, channel ID, flag, result);

ui nt 64 serverl D,

ui nt 64 channel | D,
Channel Properties flag;
int* result;

unsigned int ts3server_getChannel Vari abl eAsString(serverl D, channellD, flag, re-
sult);

ui nt 64 serverl D,

ui nt 64 channel | D;
Channel Properties flag;
char** result;

Parameters
e serverlD
ID of the virtual server on which the channel property is queried.
« channel I D
ID of the queried channel.
« flag
Channel propery to query, see below.
* result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3ser ver _freeMenory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Channel Properties:

enum Channel Properties {
CHANNEL_NAME = O, // Avail able for all channels that are "in view', always up-to-date

22

TeamSpeak 3 Server
SDK Developer Manual

CHANNEL_TOPI C, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_DESCRI PTI ON, // Must be requested (=> request Channel Descri ption)

CHANNEL_ PASSWORD, //not available client side

CHANNEL_ CODEC, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC_QUALI TY, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXCLI ENTS, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXFAM LYCLI ENTS, // Avail able for all channels that are "in view', always up-to-date
CHANNEL _ ORDER, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_PERMANENT, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG _SEM _PERVMANENT, //Available for all channels that are "in view', always up-to-date
CHANNEL_FLAG DEFAULT, // Avail able for all channels that are "in view', always up-to-date
CHANNEL _FLAG_PASSWORD, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC LATENCY_FACTOR, //Available for all channels that are "in view', always up-to-date
CHANNEL_CODEC | S_UNENCRYPTED, //Available for all channels that are "in view', always up-to-date

CHANNEL_ ENDVARKER,

CHANNEL_ NANVE

String: Name of the channel.

CHANNEL_TOPI C

String: Single-line channel topic.

CHANNEL _DESCRI PTI ON

String: Optional channel description. Can have multiple lines.
CHANNEL _ PASSWORD

String: Password for password-protected channels.

If apassword is set or removed by modifying thisfield, CHANNEL _FLAG PASSWORD will be automatically adjusted.
CHANNEL_ CODEC

Int (0-3): Codec used for this channel:

» 0- Speex Narrowband (8 kHz)

* 1- Speex Wideband (16 kHz)

» 2 - Speex Ultra-Wideband (32 kHz)
CHANNEL_CODEC QUALI TY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

CHANNEL _MAXCLI ENTS

Int: Number of maximum clients who can join this channel.

CHANNEL _MAXFAM LYCLI ENTS

Int: Number of maximum clients who can join this channel and all subchannels.

CHANNEL _ ORDER

23

TeamSpeak 3 Server
SDK Developer Manual

Int: Defines how channels are sorted in the GUI. Channel order isthe ID of the predecessor channel after which this channel
isto be sorted. If O, the channel is sorted at the top of its hirarchy.

CHANNEL _FLAG_PERMANENT / CHANNEL_FLAG_SEM _ PERVANENT
Concerning channel durability, there are three types of channels:
» Temporary

Temporary channels have neither the CHANNEL _FLAG _PERMANENT nor CHANNEL FLAG SEM _PERVMANENT flag
set. Temporary channels are automatically deleted by the server after the last user has|eft and the channel isempty. They
will not be restored when the server restarts.

* Semi-permanent

Semi-permanent channels are not automatically deleted when the last user |eft but will not be restored when the server
restarts.

e Permanent
Permanent channels will be restored when the server restarts.
CHANNEL FLAG DEFAULT

Int (0/1): Channel isthe default channel. There can only be one default channel per server. New userswho did not configure
achannel tojoinonloginint s3server _st art Connecti on will automatically join the default channel.

CHANNEL _FLAG_PASSWORD
Int (O/1): If set, channel is password protected. The password itself is stored in CHANNEL _PASSWORD.
CHANNEL _CODEC LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This alows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) isthe best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality alow latency factor is recommended.

CHANNEL _CODEC | S_UNENCRYPTED

Int (0/2): If 1, thischannel isnot using encrypted voice data. If 0, voice datais encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC_ENCRYPTI ON_PER_CHANNEL (the default
behaviour).

Example 1: Query topic of channel with ID 123:

ui nt 64 channel I D = 123; /* Channel |ID in our exanpel */
char topic;

i f(ts3server_get Channel Vari abl eAsString(serverl D, channel, CHANNEL_TOPIC, &topic) == ERROR ok) {

printf("Topic of channel % is: %\n", channellD, topic);
t s3server _freeMenory(topic);

24

TeamSpeak 3 Server
SDK Developer Manual

Setting channel information
Channel properties can be modified with:;
unsi gned int ts3server_set Channel Vari abl eAsl nt (server| D, channel ID, flag, value);

ui nt 64 serverl D,

ui nt 64 channel | D;
Channel Properties flag;
i nt val ue;

unsi gned i nt ts3server_set Channel Vari abl eAsStri ng(serverl D, channel I D, flag, val ue);

ui nt 64 serverl D,

ui nt 64 channel | D,
Channel Properties flag;
const char* val ue;

Parameters
» server ConnectionHandl er| D
ID of the virtual server on which the information for the specified channel should be changed.
e channel I D
ID of the channel whoses property should be changed.
- flag
Channel propery to change, see above.
* val ue
Vaue the channel property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

| mportant

A After modifying one or more channel variables, you must flush the changes.
unsi gned int ts3server_flushChannel Vari abl e(serverl D, channel | D);
ui nt 64 serverl D,

ui nt 64 channel | D;

Example: Change the channel name and topic:

/* Modi fy channel nanme */
i f(ts3server_set Channel Vari abl eAsString(serverl D, channel | D, CHANNEL_NAME, "New channel name") != ERROR ok)

25

TeamSpeak 3 Server
SDK Developer Manual

printf("Error setting channel nanme\n");

}

/* Modify channel topic */
i f(ts3server_set Channel Vari abl eAsString(serverl D, channel | D, CHANNEL_TOPI C, "New channel topic") != ERROR ok) {
printf("Error setting channel topic\n");

}

/* Flush changes */
i f(ts3server_flushChannel Vari abl e(server| D, channel I D) != ERROR ok) {
printf("Error flushing channel variable\n");

}

Server information

Query server information
Information related to a virtual server can be queried with::
unsi gned int ts3server_getVirtual ServerVari abl eAsint (serverI D, flag, result);

ui nt 64 serverl D,
Vi rtual ServerProperties flag;
int* result;

unsi gned int ts3server_getVirtual ServerVari abl eAsString(serverl D, flag, result);

ui nt 64 serverlD;
Vi rtual ServerProperties flag;
char** result;

Parameters
* serverl D
ID of the virtual server of which the property is queried.
- flag
Virtual server propery to query, see below.
* result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3ser ver _freeMenory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Virtual ServerProperties:

enum Vi rtual Server Properties {
VI RTUALSERVER_UNI QUE_I DENTI FI ER = 0, //avail abl e when connected, can be used to identify this particul ar

26

TeamSpeak 3 Server
SDK Developer Manual

//server installation

VI RTUALSERVER_NAME, // avail abl e and al ways up-to-date when connected
VI RTUALSERVER_WVEL COVEMESSAGCE, // avai | abl e when connected, not updated whil e connected
VI RTUALSERVER_PLATFORM // avai | abl e when connect ed
VI RTUALSERVER_VERSI ON, // avai | abl e when connect ed
VI RTUALSERVER_MAXCLI ENTS, //only avail abl e on request (=> request ServerVariables), stores the
[/ maxi mum nunber of clients that may currently join the server
VI RTUALSERVER_PASSWORD, //not available to clients, the server password
VI RTUALSERVER_CLI ENTS_ONLI NE, //only avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CHANNELS_ONLI NE, //only avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CREATED, // avai |l abl e when connected, stores the time when the server was created

VI RTUALSERVER_UPTI ME, //only avail abl e

on request (=> requestServerVariables), the tinme

//since the server was started
VI RTUALSERVER_CODEC_ENCRYPTI ON_MCDE, //avail abl e and al ways up-to-date when connected

VI RTUALSERVER ENDNVARKER,

VI RTUALSERVER _UNI QUE_I DENTI FI ER

Unique ID for thisvirtual server. Stays the same after restarting the server application.

VI RTUALSERVER_NANME

Name of thisvirtua server.

VI RTUALSERVER_WEL COVEMESSACGE

Optional welcome message sent to the client on login.
VI RTUALSERVER_PLATFORM

Operating system used by this server.

VI RTUALSERVER_VERSI ON

Application version of this server.

VI RTUALSERVER_MAXCLI ENTS

Defines maximum number of clients which may connect to this server.

VI RTUALSERVER_PASSWORD

Optional password of this server.

If a password is set or removed by modifying this field, VI RTUALSERVER FLAG PASSWORD will be automatically

adjusted.

VI RTUALSERVER_CLI ENTS_ONLI NE

VI RTUALSERVER_CHANNELS_ ONLI NE

Number of clients and channels currently on this virtual server.
VI RTUALSERVER_CREATED

Time when this virtual server was created.

VI RTUALSERVER_UPTI ME

27

TeamSpeak 3 Server
SDK Developer Manual

Uptime of thisvirtual server.
* VI RTUALSERVER CCDEC_ENCRYPTI ON_MODE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL _CODEC | S_UNENCRYPTED defines voice data encryption of individua channels.

Virtual server encryption mode can be set to the following parameters:

enum CodecEncrypti onMbde {
CODEC_ENCRYPTI ON_PER _CHANNEL = 0,
CODEC_ENCRYPT| ON_FORCED_OFF,
CODEC_ENCRYPT| ON_FORCED_ON,

b

This property is always available when connected.

Example checking the number of clients online, obviously an integer value:
int clientsOnline;

if(ts3server_getVirtual ServerVari abl eAsl nt (server| D, VI RTUALSERVER CL| ENTS_ONLI NE,
&clientsOnline) == ERROR 0k)
printf("There are % clients online\n", clientsOnline);

Setting server information
Change server variables with the following functions:
unsi gned int ts3server_setVirtual ServerVari abl eAsInt (serverI D, flag, value);

ui nt 64 serverlD;
Channel Properties flag;
i nt val ue;

unsi gned int ts3server_setVirtual ServerVari abl eAsString(serverl D, flag, value);

ui nt 64 serverl D,
Channel Properties flag;
const char* val ue;

Parameters
* serverlD

ID of the virtual server of which the property should be changed.
« flag

Virtual server propery to change, see above.

e val ue

28

TeamSpeak 3 Server
SDK Developer Manual

Vauethe virtual server property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

f | mportant

After modifying one or more server variables, you must flush the changes.
unsi gned int ts3server_flushVirtual ServerVari abl e(serverlD);

ui nt 64 serverl D;

Example: Change the servers welcome message:

if(ts3server_setVirtual ServerVari abl eAsString(serverl D, VI RTUALSERVER WELCOVEMESSAGE,

"New wel come nmessage") != ERROR ok) {
printf("Error setting server wel comenessage\n");
return;
}
if(ts3server_flushVirtual ServerVari abl e(serverI D) != ERROR ok) {

printf("Error flushing server variable\n");

}

Bandwidth information

The server offersinformation about the currently used bandwidth.

The following set of connection properties can be queried:

* CONNECTION_PACKETS SENT_TOTAL

e CONNECTION_BYTES SENT_TOTAL

* CONNECTION_PACKETS RECEIVED_TOTAL

« CONNECTION_BYTES RECEIVED_TOTAL

« CONNECTION_BANDWIDTH_SENT_LAST_SECOND_TOTAL

« CONNECTION_BANDWIDTH_SENT_LAST MINUTE_TOTAL

« CONNECTION_BANDWIDTH_RECEIVED LAST_SECOND _TOTAL

» CONNECTION_BANDWIDTH_RECEIVED_LAST_MINUTE_TOTAL

The connection information can be queried with the following two functions:

unsigned int ts3server_getVirtual Server Connecti onVari abl eAsUl nt 64(server| D,
result);

ui nt 64 serverlD;
enum Connecti onProperties flag;

flag,

29

TeamSpeak 3 Server
SDK Developer Manual

ui nt 64* result;

unsigned int ts3server_getVirtual ServerConnecti onVari abl eAsDoubl e(serverl D, flag,
result);

ui nt 64 serverl D,

enum Connecti onProperties flag;
doubl e* result;

Parameters
* serverlD
Server ID
- flag
One of the above listed connection properties.
* result

Address of avariable that receives the result value as uint64 (unsigned 64-bit integer) or double type, depending on which
of the two functions was used.

Both functions return ERROR_ok on success, otherwise an error code as defined inpubl i c_errors. h.

Channel and client manipulation

The Server Lib offers a subset of client-side functionality to create, move and delete channels directly on the server.

Creating a new channel

To create a channel, first set the desired channel variables using t s3ser ver _set Channel Vari abl eAsl nt and
t s3server _set Channel Vari abl eAsSt ri ng. Pass zero as the channel 1D parameter.

Next send the request to the server by calling:
unsi gned int ts3server_flushChannel Creation(serverl D, channel Parentl D, result);
ui nt 64 serverl D,

ui nt 64 channel Parent | D;
ui nt 64* result;

Parameters

e serverl D

30

TeamSpeak 3 Server
SDK Developer Manual

ID of the virtual server on which that channel should be created.
e channel Parent| D

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be crested as
top-level channel.

e result
Address of avariable that receives the ID of the newly created channel.
Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Example code to create a channel:
#define CHECK_ERROR(x) if((error = x) != ERROR ok) { goto on_error; }

int createChannel (ui nt64 serverl D, uint64 parentChannel ID, const char* name, const char* topic,
const char* description, const char* password, int codec, int codecQuality,
int mxCients, int fanmilyMaxdients, int order, int perm int sem perm
int default) {
unsigned int error;
ui nt 64 newChannel | D;

/* Set channel data, pass 0 as channel 1D */

CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,

CHANNEL_NAME, nane));

CHANNEL_TOPI C, topic));

CHANNEL_DESCRI PTI ON, description));
CHANNEL_PASSWORD, password));
CHANNEL_CODEC, codec));

CHANNEL_CODEC _QUALI TY, codecQuality));
CHANNEL_MAXCLI ENTS, maxdients));
CHANNEL_MAXFAM LYCLI ENTS, fami | yMaxdients));
CHANNEL_CORDER, order));
CHANNEL_FLAG_PERVANENT, pern));
CHANNEL_FLAG_SEM _PERVANENT, semi perm);
CHANNEL_FLAG DEFAULT, default));

OCoo0oo0o0o0o0o0o0o0o0o

/* Flush changes to server */
CHECK_ERROR(t s3server_fl ushChannel Creati on(serverl D, parentChannel | D, &ewChannel ID));

printf("Created new channel with ID: %\ n", newChannel|D);
return 0; /* Success */

on_error:
printf("Error creating channel: %l\n", error);
return 1; /* Failure */

}

After creating achannel, the event onChannel Cr eat ed iscalled.

Deleting a channel

A channel can be deleted by the server with
unsi gned int ts3server_channel Del ete(serverl D, channel ID, force);

ui nt 64 serverl D;
ui nt 64 channel | D;

31

TeamSpeak 3 Server
SDK Developer Manual

int force;

Parameters
* serverlD
The ID of the virtual server on which the channel should be deleted.
« channel I D
The ID of the channel to be deleted.
» force

If 1, first move al clients inside the specified channel to the default channel and then delete the specific channel. If false,
deleting a channel with joined clients will fail.

If O, the server will refuse to a channel that is not empty.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After successfully deleting a channel, the event onChannel Del et ed iscaled for every deleted channel.

Moving a channel

To move a channel to a new parent channel, call
unsi gned int ts3server_channel Move(serverl D, channel | D, newChannel ParentlD);
ui nt 64 serverl D,

ui nt 64 channel | D;
ui nt 64 newChannel Parent | D;

Parameters
e serverlD
ID of the virtual server on which the channel should be moved.
e channel I D
ID of the channel to be moved.
* newChannel Parent| D
ID of the parent channel where the moved channel isto be inserted as child. Use O to insert as top-level channel.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After the channel has been moved, the event onChannel Edi t ed iscaled.

32

TeamSpeak 3 Server
SDK Developer Manual

Moving clients

Clients can be moved server-side to another channel, in addition to the client-side functionality offered by the Client Lib. To
move one or multiple clients to a new channel, call:

unsi gned int ts3server_clientMwve(serverl D, newChannel D, clientlDArray);

ui nt 64 serverl D,
ui nt 64 newChannel | D;
const anyl D* clientl|DArray;

Parameters
e serverlD
ID of thevirtual server on which the client should be moved.
* newChannel I D
ID of the channel in which the clients should be moved into.
* newChannel Parent | D
Zero-terminated array with the IDs of the clients to be moved.
Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h.
After the channel has been moved, the event onCl i ent Moved is called.

Example to move a single client to another channel:

anylD clientlDArray[2]; /* One client plus termnating zero as end- marker */
ui nt 64 newChannel | D;
unsigned int error;

client! DArrayl[0]
clientl DArray[1]

clientID, /* dient to nove */
0; /* End marker */

if((error = ts3server_clientMve(serverlD, newChannel | D, channellDArray)) != ERROR ok) {
/* Handle error */
return;

}

/* Cdient noved successfully */

Events

The server libwill notify the server application about certain actions by sending events as callbacks. Callback function pointers
needsto beinitializedint s3server _i ni t Server Li b.

E Note
Your callback implementations should exit quickly to avoid blocking the server. If you require to do lengthly
operations, consider using a new thread to let the callback itself finish as soon as possible.

33

TeamSpeak 3 Server
SDK Developer Manual

All strings are UTF-8 encoded.
A client has connected:
voi d ond i ent Connected(serverID, clientlD, channellD, renovedientError);

ui nt 64 serverlD;

anyl D clientlD;

ui nt 64 channel | D,

unsigned int* renovedientError;

Parameters
* serverlD
ID of the virtual server.
e clientlD
ID of the connected client.
e channel I D
ID of the channel the client has joined.
* removeC ientError

If the pointer value is ERROR_ok (default), this client will connect normally to the virtual server. To prevent the client
connecting, set the pointer value to any valid error (see the header publ i ¢_errors. h):

*renoved ientError = ERROR client_insufficient_perm ssions;

If you do not want to block the client, it's best to not modify ther enoveC i ent Err or parameter at all and leave the
default value of ERROR_ok.

A client has disconnected:
voi d ond i ent Di sconnected(serverI D, clientlD, channellD);

ui nt 64 serverl D;
anyl D clientlD;
ui nt 64 channel | D;

Parameters
e serverlD

ID of the virtual server.
e clientlD

ID of the disconnected client.

TeamSpeak 3 Server
SDK Developer Manual

e« channel I D

ID of the channel the client has | eft.

A client has moved into another channel:

voi d ond i ent Moved(serverl D, clientlD, ol dChannellD, newChannel|D);
ui nt 64 serverlD;

anyl D clientlD;

ui nt 64 ol dChannel | D;
ui nt 64 newChannel | D;

Parameters
* serverlD
ID of thevirtual server.
e clientlD
ID of the moved client.
« ol dChannel I D
ID of the old channel the client has | eft.
* newChannel I D

ID of the new channel the client has joined.

A channel has been created:
voi d onChannel Created(serverl D, invokerdientlD, channellD);
ui nt 64 serverl D;

anyl D i nvokerd i ent| D
ui nt 64 channel | D,

Parameters
* serverlD

ID of the virtual server.
e invokerCdientlD

ID of theinvoker who created the channel (client or server ID).

35

TeamSpeak 3 Server
SDK Developer Manual

e« channel I D

ID of the created channel.

A channel has been edited:
voi d onChannel Edi ted(server| D, invokerClientlD, channellD);
ui nt 64 serverl D,

anyl D i nvokerd i ent | D
ui nt 64 channel | D;

Parameters
* serverlD
ID of the virtual server.
* invokerClientlD
ID of the invoker who edited the channel (client or server ID).
* channel I D

ID of the edited channel.

A channel has been del eted:
voi d onChannel Del et ed(server| D, invokerdientlD, channellD);

ui nt 64 serverl D,
anyl D i nvokerd i ent| D
ui nt 64 channel | D;

Parameters
» serverlD
ID of the virtual server.
e invokerCientlD
ID of theinvoker who deleted the channel (client or server ID).
* channel I D

ID of the deleted channel.

36

TeamSpeak 3 Server
SDK Developer Manual

Text messages can be received on the server side. Only server and channel chats trigger this event, client-to-client messages
are not caught for privacy reasons.

Server chat messages can be intercepted with:
voi d onServer Text MessageEvent (server|I D, invokerClientlD, textMssage);

ui nt 64 serverlD;
anyl D i nvokerd i ent| D
const char* textMessage;

Parameters
* serverlD
ID of thevirtual server.
e invokerCientlD
ID of the client who sent the text message.
e text Message
M essage text
Channel chat messages can be intercepted with:

voi d onChannel Text MessageEvent (serverl D, invokerCientlD, targetChannellD, textMes-
sage);

ui nt 64 serverlD;

anyl D i nvokerd i ent | D
ui nt 64 target Channel | D
const char* textMessage;

Parameters
* serverlD
ID of thevirtual server.
e invokerCientlD
ID of the client who sent the text message.
e target Channel I D
ID of the channel in which the text message was sent.

e text Message

M essage text

37

TeamSpeak 3 Server
SDK Developer Manual

If user-defined logging was enabled when initialzing the Server Lib by passing LogType_ USERLOGA NG to the used-
LogTypes parameter of t s3ser ver _i nit Server Li b, log messages will be sent to the following callback, which al-
lows user customizable logging and handling or critical errors:

voi d onUser Loggi ngMessageEvent (| ogMessage, | oglLevel, | ogChannel, | ogl D, | ogTi ne, com
pl et eLogString);

const char* | ogMessage;

i nt |oglLevel;

const char* | ogChannel ;

ui nt 64 | ogl D;

const char* | ogTi ne;

const char* conpl eteLogStri ng;

Parameters
* | ogMessage

Actua log message text.
e | ogLevel

Severity of log message, defined by the enum LogLevel.

enum LogLevel {
LogLevel _CRITICAL = 0, //these nessages stop the program

LogLevel _ERROR, /leverything that is really bad, but not so bad we need to shut down
LogLevel _WARNI NG /leverything that *m ght* be bad

LogLevel _DEBUG //output that might help find a problem

LogLevel _I NFQ, /linformational output, like "starting database version x.y.z"
LogLevel _DEVEL //devel oper only output (will not be displayed in rel ease node)

H
Notethat only |og messages of alevel higher thantheoneconfiguredwitht s3ser ver _set LogVer bosi t y will appear.
* | ogChannel
Optional custom text to categorize the message channel.
* logl D
Virtual server ID identifying the current virtual server when using multiple connections.
e | ogTi ne
String with date and time when the log message occured.
e conpl eteLogString

Provides a verbose log message including all previous parameters for convinience.

A client connected to this server starts or stops talking:

void onC ientStart Tal ki ngEvent (serverI D, clientlD);

38

TeamSpeak 3 Server
SDK Developer Manual

ui nt 64 serverl D;
anyl D clientlD;

voi d ond i ent St opTal ki ngEvent (serverI D, clientlD);

ui nt 64 serverl D,
anyl D clientlD;

Parameters
* serverlD

The ID of the server which sent the event.
e clientlD

ID of the client who starts or stops talking

If required, the raw voice data can be caught by the server to implement server-side voice recording. Whenever a client is
sending voice data, the following function is called:

voi d onVoi ceDat aEvent (serverI D, clientlD, voiceData, voiceDataSi ze, frequency);

ui nt 64 serverlD;

anyl D clientlD;

unsi gned char* voi ceDat a;
unsi gned int voiceDat aSi ze;
unsi gned int frequency;

Parameters
* serverlD
The ID of the server which sent the event.
e clientlD
ID of the client who sent the voice data.
* voi ceDat a

Buffer containing the voice data. Format is 16 bit mono.

T Caution
The buffer must not be freed.

* voi ceDat aSi ze

39

TeamSpeak 3 Server
SDK Developer Manual

Size of thevoi ceDat a buffer.
e frequency

Frequency of the voice data.

E Note
This event is aways fired, even if the client is the only user in a channel. So clients “talking to themselves’
will also be recorded.

If server-side recording is not required, don't implement this callback.

The following event is called when alicense error occurs, like for example missing license file, expired license, starting too
many virtual serversetc. Instead of shutting down the whole process by throwing acritical error in the Server Lib, this callback
allows you to handle the issue gracefully and keep your application running.

voi d onAccounti ngError Event (server| D, errorCode);

ui nt 64 serverlD;
unsi gned int error Code;

Parameters
e serverl D

The ID of the virtual server on which the license error occured. This virtual server will be automatically shutdown, other
virtual servers keep running.

If server| D is zero, al virtual servers are affected and have been shutdown. In this case you might want to call
ts3server destroyServerLi b to clean up resources.

e error Code

Code of the occured error. Uset s3ser ver _get G obal Err or Message to convert to a message string.

Custom encryption
As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for al network

traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

E Note
If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:

40

TeamSpeak 3 Server
SDK Developer Manual

voi d onCust onPacket Encrypt Event (dat aToSend, sizeCOf Dat a);

char** dataToSend;
unsi gned int* sizeO Dat a;

Parameters
» dataToSend
Pointer to an array with the outgoing data to be encrypted.

Apply your custom encryption to the data array. If the encrypted datais smaller than sizeOf Data, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the
pointer dataToSend. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

e sizeCf Dat a

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:
voi d onCust onmPacket Decr ypt Event (dat aRecei ved, dat aRecei vedSi ze) ;

char** dat aRecei ved;
unsi gned int* dat aRecei vedSi ze;

Parameters
» dat aRecei ved
Pointer to an array with the received data to be decrypted.

Apply your custom decryption to the dataarray. If the decrypted datais smaller than dataReceivedSize, write your decrypted
datainto the existing memory of dataReceived. If your decrypted datais larger, you need to allocate memory and redirect
the pointer dataReceived. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

» dat aRecei vedSi ze
Pointer to an integer value containing the size of the data array.

Example code implementing a very simple XOR custom encryption and decryption (also see the SDK examples):

voi d onCust onPacket Encrypt Event (char** dat aToSend, unsigned int* sizeOData) {
unsigned int i;
for(i =0; i < *sizeOData; i++) {
(*dataToSend)[i] "= CUSTOM CRYPT_KEY;
}

41

TeamSpeak 3 Server
SDK Developer Manual

voi d onCust onPacket Decrypt Event (char** dat aRecei ved, unsigned int* dataRecei vedSi ze) {
unsigned int i;
for(i = 0; i < *dataReceivedSi ze; i++) {
(*dat aRecei ved) [i] ~= CUSTOM CRYPT_KEY;
}
}

Miscellaneous functions

Memory dynamically allocated in the Server Lib needsto be released with:
unsi gned int ts3server_freeMenory(pointer);

voi d* pointer;

Parameters
* pointer
Address of the variable to be released.

Example:
char* version;

i f(ts3server_get ServerlLi bVersion(&ersion) == ERROR ok) {
printf("Version: %\n", version);
t s3server _freeMenory(version);

2 | mportant

Memory must not bereleased if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

The severity of log messages that are passed to the callback onUser Loggi ngMessageEvent can be configured with:
unsi gned int ts3server_setlLogVerbosity(l ogVerbosity);

enum LogLevel | ogVerbosity;

Parameters

* logVerbosity
Only messages with aLogLevel equal or higher than | ogVer bosi t y will be sent to the callback.
The default valueisLoglLevel _DEVEL.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

42

TeamSpeak 3 Server
SDK Developer Manual

For example, after calling
t s3server _set LogVer bosi ty(LogLevel _ERROR);

only log messages of level LogLevel ERROR and LogLevel CRI Tl CAL will be passed to onUser Loggi ngMes-
sageEvent.

FAQ

* | cannot start multiple server processes? | cannot start more than one virtual server?
» How can | configure the maximum number of slots?
» | get"Accounting | | sid=1 isrunning" "initializing shutdown" in the log

» How to implement a name/password authentication?

| cannot start multiple server processes? | cannot start more
than one virtual server?

Youdon't haveavalid licensekey inthe correct location. Thefilel i censekey. dat needsto beplaced inthe samedirectory
asyour server executable. If no or an invalid license key is present, the server will run with the following restrictions:

* Only one server process per machine
* Only onevirtual server per process
e Only 32 dlots

Please contact <sal es@ri t onci a. con® about license key inquiries or to obtain avalid license.

How can | configure the maximum number of slots?

The number of dlots per virtua server can be changed by setting the virtua server property
VI RTUALSERVER _MAXCLI ENTS.

Example to set 100 slots on the specified virtual server:

ts3server_set Virtual Server Vari abl eAsl nt (server| D, VI RTUALSERVER MAXCLI ENTS, 100); // Set val ue
ts3server _flushVirtual ServerVari abl e(serverID); // Flush val ue

2 | mportant

Please note that you probably do not have unlimited slots allowed by your license, so don't set this arbitrarily.

| get "Accounting | | sid=1is running" "initializing shut-
down" in the log

This error does not occur because you are exceeding your licensed server or slot count, but rather because you are running
more than one instance of avirtual server with the same server keypair.

43

TeamSpeak 3 Server
SDK Developer Manual

When creating a new virtual server, a keypair must be passedtot s3server _creat eVi rt ual Server . It isimportant
to store the used keypair and reuse it when restarting this virtual server later instead of creating a new key. See the server
sample within the SDK for an example.

However, above problem can happen if the virtual server is started with a stored keypair, then the entire folder including the
stored keypair is copied to another PC and also started there with the same key. In this case the licensing server will notice
the same key is used more than once after one hour and shutdown the most recently started server which tried to steal the
identity of an already running server.

Thefix, inthe server sample case, would beto deletethe keypair_*.txt filesfrom the copied directory before starting the second
server, that way anew key would be generated and the licensing server would see the two serversastwo valid different entities.
The accounting server would now only complainif the number of simultaneously running serversexceedsyour number of slots.

How to implement a name/password authentication?

Although TeamSpeak 3 offers an authentication system based on public/private keys, an often made request is to use an
additional login name/password mechanism to authenticate clients with the TeamSpeak 3 server. Here we will suggest a
possibility to implement this authentication on top of the existing public/private key mechanism.

When connecting to the TeamSpeak 3 server, a client might make use of the CLIENT_META_DATA property and fill this
with a name/password combination to let the server validate this this data in the servers onCl i ent Connect ed callback.
This callback alowsto set an error value to block this clients connection.

The client-side code:

/1 In the client, set CLIENT_META DATA before connecting

if(ts3client_setdientSelfVariabl eAsString(scHandl erl D, CLI ENT_META _DATA, "NAME#PASSWORD') ! = ERROR_ ok) {
printf("Failed setting client neta data\n");
return;

}

/1 Call ts3client_startConnection

In the server implement the onClientConnected callback, which validates the name/password meta data and refuses the con-
nection if not validated:

voi d ond i ent Connect ed(ui nt64 serverlD, anylD clientlD, uint64 channellD, unsigned int* renmoveCientError) {
/1 Query CLI ENT_META_DATA
char* metabDat a;
if(ts3server_getdientVariabl eAsString(serverl D, clientlD, CLIENT_META DATA, &retaData) != ERROR ok) {
printf("Failed querying client neta data\n");
*renoveC ientError = ERROR client_not_logged_in; // Block client
return;

}

/1 Validate nane/ password
if(!validateNamePassword(netabData)) {
*renoveC ientError = ERROR client_not_logged_in; // Block client
}
/1 Cient is allowed to connect if renoveCientError is not changed
/1 (defaults is ERROR ok)
ts3server_freeMenory(netabData); // Release previously allocated nmenory

TeamSpeak 3 Server
SDK Developer Manual

Index

B
bandwidith, 29

C

callback, 7

calling convention, 5
connection information, 29
contact, 2

copyright, 2

E

enums
Channel Properties, 22
ClientProperties, 17
CodecEncryptionMode, 28
LogLevel, 38
LogType, 7, 38
Virtual ServerProperties, 26

events
onAccountingErrorEvent, 40
onChannel Created, 35
onChannel Deleted, 36
onChannel Edited, 36
onChannel TextM essageEvent, 37
onClientConnected, 34
onClientDisconnected, 34
onClientMoved, 35
onClientStartTalkingEvent, 39
onClientStopTakingEvent, 39
onCustomPacketDecryptEvent, 41
onCustomPacketEncryptEvent, 41
onServer TextMessageEvent, 37
onUserL oggingM essageEvent, 38
onVoiceDataEvent, 39

F

FAQ, 43

functions
ts3server_channelDelete, 32
ts3server_channelMove, 32
ts3server_clientMove, 33
ts3server_createVirtual Server, 14
ts3server_destroyServerLib, 9
ts3server_flushChannel Creation, 30
ts3server_flushChanndlVariable, 25
ts3server_flushClientVariable, 20
ts3server_flushVirtual ServerVariable, 29
ts3server_freeMemory, 42

45

TeamSpeak 3 Server
SDK Developer Manual

ts3server_getChannelClientList, 12
ts3server_getChannelList, 12
ts3server_getChannel OfClient, 13
ts3server_getChannel VariableAsint, 22
ts3server_getChannel VariableAsString, 22
ts3server_getClientList, 11
ts3server_getClientVariableAsint, 16
ts3server_getClientVariableAsString, 17
ts3server_getGlobal ErrorMessage, 10
ts3server_getParentChannel Of Channel, 13
ts3server_getServerLibVersion, 8
ts3server_getServerLibVersionNumber, 9
ts3server_getVirtual ServerConnectionVariableAsDouble, 30
ts3server_getVirtual ServerConnectionV ariableAsUInt64, 30
ts3server_getVirtual ServerKeyPair, 15
ts3server_getVirtual ServerList, 11
ts3server_getVirtual ServerVariableAsInt, 26
ts3server_getVirtual ServerVariableAsString, 26
ts3server_initServerLib, 6
ts3server_setChannelVariableAsint, 25
ts3server_setChannelVariableAsString, 25
ts3server_setClientVariableAsint, 20
ts3server_setClientVariableAsString, 20
ts3server_setClientWhisperList, 21
ts3server_setl ogVerbosity, 42
ts3server_setVirtual ServerVariableAslnt, 28
ts3server_setVirtual ServerVariableAsString, 28
ts3server_stopVirtual Server, 16

L

license error, 40
license key, 6, 43
Linux, 5

M
Macintosh, 5

S

dots, 43
system requirements, 5

T
TeamSpeak Systems, 2

W
Windows, 5

46

	TeamSpeak 3 Server SDK Developer Manual
	Table of Contents
	Copyright
	License agreement

	Introduction
	System requirements
	Usage

	Calling Server lib functions
	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Error handling
	Query virtual servers, clients and channels
	Create and stop virtual servers
	Retrieve and store information
	Client information
	Query client information
	Setting client information
	Whisper lists

	Channel information
	Query channel information
	Setting channel information

	Server information
	Query server information
	Setting server information

	Bandwidth information

	Channel and client manipulation
	Creating a new channel
	Deleting a channel
	Moving a channel
	Moving clients

	Events
	Custom encryption

	Miscellaneous functions
	FAQ
	I cannot start multiple server processes? I cannot start more than one virtual server?
	How can I configure the maximum number of slots?
	I get "Accounting | | sid=1 is running" "initializing shutdown" in the log
	How to implement a name/password authentication?

	Index

