Foundations Of AI

Assignment 2

Barry Davis

Test runs on The first game – guess 5 locations

| ?- play([3,1,4,2,5]).

guessing [1,1,1,1,1]

guessing [1,2,2,2,2]

guessing [2,1,2,3,3]

guessing [2,2,1,4,4]

guessing [3,1,3,2,5]

congratulations

The code was: [3,1,4,2,5]

yes

| ?- play([5,4,5,4,5]).

guessing [1,1,1,1,1]

guessing [2,2,2,2,2]

guessing [3,3,3,3,3]

guessing [4,4,4,4,4]

guessing [4,4,5,5,5]

guessing [4,5,4,5,5]

congratulations

The code was: [5,4,5,4,5]

yes

| ?- play([5,4,3,2,1]).

guessing [1,1,1,1,1]

guessing [1,2,2,2,2]

guessing [2,1,2,3,3]

guessing [3,3,1,2,4]

guessing [4,4,1,4,2]

guessing [4,5,3,2,1]

congratulations

The code was: [5,4,3,2,1]

yes

% Allow response to be dynamic

:-dynamic(response/2).

% what numbers are we allowed in the sequence?

what(1).

what(2).

what(3).

what(4).

what(5).

% systematically generate all possible guesses

generate_move([A,B,C,D,E]) :-
what(A),

what(B),

what(C),

what(D),

what(E).

% calculate left and right values from a code-item and a guess-item

value(CH, GH, L, R) :-
((CH<GH -> L = 1);L=0),

((CH>GH -> R = 1);R=0).

% calculate left and right values from a complete code and a complete guess (base-case)

val([CH], [GH], L, R) :- value(CH, GH, L, R).

% calculate left and right values from a complete code and a complete guess (recursive-case)

val([CH|CT], [GH|GT], L, R) :- val(CT, GT, L2, R2),

value(CH, GH, L1, R1),

L is L1+L2,

R is R1+R2.

% play the game for a given code.

% First remove all items from the database.

% Generate a move, then filter it to see if it is a worthy guess.

% If it is then ask if it is the code.

% If it is the code then the game is won.

% If it is'nt the code then put the guess in the database and fila, ie try another move.

play(Code) :-
retractall(response(_,_)),
% empty the response database

generate_move(M),

% generate a move

filter(M),

% Is it worthy?

val(M,Code,L,R),

% It is, so get its values (L and R)

(L==0, R==0 ->

% Is it right?

(

% YES

write('congratulations'),
% game completed

nl,

write('The code was: '),

display(M),

nl

);

(

% NO

assert(response(M,L-R)),
% stick guess with L-R in database

write('guessing '),

display(M),

nl,

fail

% fail this attempt

)

% and try another guess

).

% The filter - For the given guess:

% check it against all entries in the database

% as if the entries in the database were the real code.

% If for all database entries the value L-R matches then it is a valid guess,

% otherwise its not

filter(M) :- forall(response(S,L-R), val(S,M,L,R)).

Test runs on the second game – guess 5 locations and colours.

| ?- play([1-blue,5-red,3-red,2-blue,5-blue]).

guessing [-(1,blue),-(1,blue),-(1,blue),-(1,blue),-(1,blue)]

guessing [-(1,blue),-(2,blue),-(2,blue),-(2,red),-(2,red)]

guessing [-(1,blue),-(2,red),-(3,red),-(3,blue),-(3,blue)]

guessing [-(1,blue),-(3,red),-(2,red),-(3,blue),-(4,blue)]

guessing [-(1,blue),-(4,red),-(3,red),-(2,blue),-(5,blue)]

congratulations

The code was: [-(1,blue),-(5,red),-(3,red),-(2,blue),-(5,blue)]

yes

| ?- play([4-red,3-red,2-red,1-blue,5-blue]).

guessing [-(1,blue),-(1,blue),-(1,blue),-(1,blue),-(1,blue)]

guessing [-(1,blue),-(2,blue),-(2,red),-(2,red),-(2,red)]

guessing [-(2,red),-(1,red),-(2,blue),-(3,blue),-(3,red)]

guessing [-(2,red),-(2,red),-(1,blue),-(4,red),-(4,blue)]

guessing [-(3,red),-(3,red),-(2,red),-(1,blue),-(5,blue)]

guessing [-(3,red),-(4,red),-(2,red),-(1,blue),-(5,blue)]

congratulations

The code was: [-(4,red),-(3,red),-(2,red),-(1,blue),-(5,blue)]

yes

| ?- play([1-red,5-blue,1-red,5-blue,1-red]).

guessing [-(1,blue),-(1,blue),-(1,blue),-(1,blue),-(1,blue)]

guessing [-(1,blue),-(1,blue),-(1,red),-(2,red),-(2,red)]

guessing [-(1,blue),-(1,red),-(2,blue),-(1,red),-(3,red)]

guessing [-(1,red),-(2,blue),-(1,red),-(3,blue),-(1,red)]

guessing [-(1,red),-(3,blue),-(1,red),-(4,blue),-(1,red)]

guessing [-(1,red),-(4,blue),-(1,red),-(5,blue),-(1,red)]

congratulations

The code was: [-(1,red),-(5,blue),-(1,red),-(5,blue),-(1,red)]

yes

% Allow response to be dynamic

:-dynamic(response/2).

% what colours are we allowed in the sequence?

colour(blue).

colour(red).

% what numbers are we allowed in the sequence?

what(1).

what(2).

what(3).

what(4).

what(5).

% what is each entry in the sequence made up from?

move(X-Y) :- what(X), colour(Y).

% systematically generate all possible guesses

generate_move([A,B,C,D,E]) :-
move(A),

move(B),

move(C),

move(D),

move(E).

% calculate left, right, and colour values from a code-item and a guess-item

% the colour value is incremented when a colour is wrong.

value(CH-CHcol, GH-GHcol, L, R, C) :-
((CH<GH -> L = 1);L=0),

((CH>GH -> R = 1);R=0),

((CHcol\=GHcol -> C=1);C=0).

% calculate left, right, and colour values from

% a complete code and a complete guess (base-case)

val([CH], [GH], L, R, C) :- value(CH, GH, L, R, C).

% calculate left, right, and colour values from

% a complete code and a complete guess (resursive-case)

val([CH|CT],

 [GH|GT],

 L,R,C) :-
val(CT, GT, L2, R2, C2),

value(CH, GH, L1, R1, C1),

L is L1+L2,

R is R1+R2,

C is C1+C2.

% play the game for a given code.

% First remove all items from the database.

% Generate a move, then filter it to see if it is a worthy guess.

% If it is then ask if it is the code.

% If it is the code then the game is won.

% If it is'nt the code then put the guess in the database and fila, ie try another move.

play(Code) :-
retractall(response(_,_)),
% empty the response database

generate_move(M),

% generate a move

filter(M),

% Is it worthy?

val(M,Code,L,R,C),

% It is, so get its values (L,R, and C)

(L==0, R==0, C==0 ->

% Is it right?

(

% YES

write('congratulations'),
% game completed

nl,

write('The code was: '),

display(M),

nl

);

(

% NO

assert(response(M,L-R-C)),
% stick guess with L-R and C in database

write('guessing '),

display(M),

nl,

fail

% fail this attempt

)

% and try another guess

).

% The filter - For the given guess:

% check it against all entries in the database

% as if the entries in the database were the real code.

% If for all database entries the values L-R and C matche then it is a valid guess,

% otherwise its not

filter(M) :- forall(response(S,L-R-C), val(S,M,L,R,C)).

Page 8 of 9

