
Appendix A

Applications of CYC

The development of CYC was a very long–term, high–risk gamble that has begun to pay
off. Started in 1984, CYC is now a working technology with applications to many real–
world business problems. CYC’s vast knowledge base enables it to perform well at tasks
that are beyond the capabilities of other software technologies.

This appendix indicates CYC’s potential by describing some tasks to which CYC is
currently being applied and by suggesting future applications.

Applications Currently Available or in Development

• Natural-Language Processing

• Integration of Heterogeneous Databases

• Knowledge–Enhanced Retrieval of Captioned Information

• Thesaurus Management

• Distributed AI

• WWW Information Retrieval

Potential Applications

• Online brokering of goods and services

• “Smart” interfaces

• Intelligent character simulation for games

• Enhanced virtual reality

• Improved machine translation

• WWW Information Retrieval

i

• Improved speech recognition

• Sophisticated user modelling

• Semantic data mining

A.1 Natural–Language Processing

As seen in lectures, NL understanding needs CYC–like common sense is a prerequisite for
human–level competence at this task.

Consider the following pair of sentences:

1. Peter saw the plane flying over Zurich.

2. Peter saw the mountains flying over Zurich.

Traditional NL systems will have difficulty resolving this syntactic ambiguity, but be-
cause CYC knows that planes fly and mountains do not, it will be able to parse these
sentences just as easily as a human. It’s difficult to see how this could be done without
relying on a large database of common sense.

Here are a couple more examples; these involve pronoun disambiguation:

1. The police arrested the demonstrators because they feared violence.

2. The police arrested the demonstrators because they advocated violence.

1. Mary saw the dog in the store window and wanted it.

2. Mary saw the dog in the store window and pressed her nose up against it.

The CYC–NL system has three components: the lexicon, the syntactic parser, and the
semantic interpreter. Currently it is possible to correctly parse many different sentence
types, including ambiguous and syntactically complex inputs. CYC is capable of handling
negation, modals, and nested quantifiers. Interfaces are being developed to make assertions
and query CYC using English instead of CycL together with a generation component, which
will produce english strings from CycL.

Future directions for CYC–NL will include:

• exploring the role CYC could play in machine translation

• using CYC–NL to post–process output of speech recognition systems

• harnessing CYC–NL to enhance user interfaces.

ii

A.2 Integration of Heterogeneous Databases and Data

Mining

Current database systems are information–rich but knowledge–poor. They have a very flat
structure that incorporates little or no semantic–level knowledge. A personnel database
may know that “John Tucker” is a“professor” who works for “Swansea University”, but it
does not know what these strings mean, what a person is, what a professor is, or what a
university is. CYC, however, does know!

To provide everyday knowledge about the world, CYC is given a description of the
content of each database to be used, using CycL. For example, in a table, the field CITY
contains text strings which can be mapped directly to instances of the CYC term $City,
like $NewYorkCity. Once you have the description of the database in the CYC knowledge
base, you can use that knowledge in all sorts of ways.

Let’s say, for example, that we have two tables. The first is a table of people with three
fields: the person’s name, the person’s job title, and the name of the person’s employer.
The second is a table of employers with two fields: the employer’s name and the name of
the state where the employer is located.

Now imagine that we want to use these two tables to answer the following query:
“Show me people who hold an advanced degree and live in South Wales.” But wait!
The tables don’t say anything about degrees people hold or where they live, and they
don’t mention New England. But CYC knows that doctors, lawyers, and professors hold
advanced degrees, that people generally live near their place of work, and that New England
is comprised of six specific states. So CYC converts this query into a query for doctors,
lawyers, and professors whose employer is located in South Wales. CYC automatically
generates the necessary SQL, talks to the relevant databases, and converts the results back
into CycL where appropriate. If John Tucker is listed a professor working at Swansea, then
he will be found to satisfy the original query.

The only way to get the same result using existing database tools would be to formulate
the SQL query by hand, using your own knowledge of both the world and, more impor-
tantly, of the structure and content of the available tables. With CYC, on the other hand,
you can issue a query in plain english (using CYC’s NL capabilities), and you don’t need
to know anything about the tables, or even which tables are available. The process is fully
automatic.

CYC’s database tools handle a query in three phases: the interface phase, the planner
phase, and the executor phase.

In the interface phase, the user constructs a query using an interface tool. In some
versions of the database application, the interface is a simple template form which the user
fills out and submits; in others, the user enters a plain english query, which is converted by
CYC’s NL module into a CycL expression with free variables. So, for example, “Professors
living in South Wales” might get converted to

($and

($isa ?x $Professor)

iii

($residesInGeographicRegion ?x $SouthWales-UKRegion))

In the planner phase, the CYC inference engine uses assertions in the knowledge base
to backchain from that expression to expressions which refer to descriptions of database
columns. One such expression might be:

($and

($isa ?x $Professor)

($employees ?y ?x)

($residenceOfOrganization ?y $WestGlamorgan))

Next, these expressions are converted into a intermediate representation format called
CSQL, which represents logical database queries at a high level (that is, without reference
to the specific location or format of the underlying data).

In the executor phase, CYC uses knowledge about the physical aspects of the underlying
databases to convert the (logical) CSQL queries into (physical) SQL queries. It is at this
stage, for example, that logical terms (such as $WestGlamorgan) are translated into terms
appropriate for the specific database (such as WGlam or whatever).

When the results of the SQL query come back from the database, CYC translates
objects it knows about back into CycL (e.g WGlam back into $WestGlamorgan) and leaves
rest as raw data.

During 1995, Cycorp developed an application along the lines described above for a
major pharmaceuticals company. The application is used to integrate tens of gigabytes of
data from over 60 tables. The databases used are Oracle databases, but the CYC database
technology is compatible with any other SQL database. In fact, it would be quite easy to
modify the executor to communicate using ODBC or OpenDoc.

A.3 Knowledge-Enhanced Searching of Captioned In-

formation

Large organizations frequently possess large libraries of “opaque” information sources; that
is, data which do not lend themselves to traditional text-based searching methods. A news
agency may possess a library of thousands of news photos; a movie studio thousands of
film clips; a software help desk thousands of text articles too unwieldy to index directly.
When such libraries must be searched, a common solution is to attach to each item a short
text caption describing its contents. Thus a news photo of a soldier holding a gun to a
woman’s head might be captioned “a soldier holding a gun to a woman’s head”, plus a few
tags for time and place, and then could be retrieved by querying for “soldier” or “gun”.

This solution, while certainly adequate, is far from ideal. It would be nice if the
photo could also be retrieved by queries for someone in danger”, or “a frightened person”,

iv

or “a man threatening a woman”. Such an achievement, however, lies far beyond the
abilities of even the most sophisticated of traditional text–searching tools, all of which are
fundamentally based on simple string matching and synonyms. Most search tools lack the
ability to handle NL queries, and even those that do have some NL capability lack the
background of commonsense knowledge required to make a connection between having a
gun to one’s head and feeling frightened.

CYC is not crippled by such a liability. CYC knows that guns shoot bullets and are
designed to kill people; that having a gun to one’s head therefore threatens one’s life; that
those whose lives are threatened feel fear; and that the vast majority of soldiers are men.
CYC can therefore conclude that the image in question is, in all likelihood, a good match
for each of the queries above.

A major focus of the CYC team’s efforts in 1994 was the creation of an image-retrieval
application for a major corporate partner which possessed a library of hundreds of thou-
sands of captioned images, but no fully satisfactory way to search them. Building on the
CYC inference engine and CYC’s NL capabilities, a system was developed along the lines
described above.

First, the content of each image in the library is described to CYC by converting
the english captions to CycL and adding the resulting formulas to the knowledge base.
CYC’s NL tools permit the english-to-CycL translation to be mostly automatic; human
intervention is required only in unusual cases.

Once the target images have been described to CYC, the system is ready to accept
queries, which can be issued in plain english. CYC begins by converting the english queries
to CycL, again using CYC’s NL tools. For example, the english query “a frightened person”
might be parsed as:

($and

($isa ?x $Person)

($feelsEmotion ?x $Fear $High))

After asking the user to confirm its parse (or, occasionally, to choose one of two or
more equally valid parses), CYC begins to backchain from the query expression, using the
image descriptions and other knowledge in the KB. When it is able to unify all the free
variables with the elements of a picture (in our example, ?x would unify with the woman
in the picture), CYC knows it has found a match.

Cycorp has generalized this approach to image retrieval to extend it to other opaque–
information–source retrieval applications. For example, document retrieval from large
libraries of text documents described by short abstracts (analogous to image captions),
is a task nearly identical in structure to that of retrieving captioned images. In fact, any
database of captions, summaries, or abstracts could be handled similarly, whether the
corresponding library contained images, sounds, video, text, or anything else.

v

A.4 Thesaurus Management

Cycorp has built a Thesaurus Manager tool that allows users to import and simultaneously
manage and integrate multiple industry–specific and other thesauri. This tool is the most
advanced multi-thesaurus manager available; it allows any combination of thesauri to be
“active”, it has machine–guided “conceptual merging” of thesaurus terms based on the
CYC ontology, and it is designed to work with various existing thesaurus tools. A working
prototype of this application has been created using medical thesauri, and is currently in
the evaluation stage of development. Cycorp is considering productizing the Thesaurus
Management tool for clients in the medical field and in other fields.

A.5 Distributed AI

Within the next few years, CYC may be installed at sites where even thousands of users
need to harness its power simultaneously. An important question is: what should the
architecture of such an installation look like?

While one CYC server can easily support a dozen clients at the same time, handling
operations from thousands of clients would bring a CYC server to its knees. How do we
address this scalability issue?

The obvious alternative is an architecture in which each user (or workgroup) runs its
own local CYC server, with its own copy of the CYC knowledge base. But this scenario
does little to alleviate the scalability problem. Now, each user is saddled with the respon-
sibility of hosting a knowledge base which already contains nearly half a million assertions,
and could easily grow into the millions as more and more specialized knowledge is added.
Moreover, each user must tolerate the computational and communicational overhead asso-
ciated with keeping each of the thousands of copies of CYC in sync with each other.

A great deal of the redundancy and inefficiency of such an architecture can be eliminated
by adapting CYC to work in a distributed fashion. In fact, this is how humans work: we
specialize and collaborate. Although most humans share a core of common knowledge which
allows them to communicate, no one human possesses all the knowledge of the human race.
Instead, we have experts in law, medicine, construction, automotive repair, and software
design. When a human lacks the knowledge to solve a problem, he can often find a solution
by collaborating with an expert. When I go to the doctor with a persistent headache, the
doctor’s knowledge of medicine combines with my knowledge of my symptoms to produce
a solution that neither of us could have reached alone.

In a distributed CYC architecture, the network is populated with CYC agents, each of
which shares a common core of knowledge, but possesses in addition one or more additions
to the core knowledge base that extend its expertise into new domains. Most importantly,
the various CYC agents are endowed with the ability to communicate with each other and
to perform inferencing in a collaborative fashion. The inter–agent communication can be
handled flexibly by using KQML or some other knowledge-sharing protocol, or it can be
implemented using a more efficient CYC–specific protocol.

vi

CYC agents in a distributed architecture share knowledge describing how they can be
reached (via which network address, port, and protocol) and what their areas of expertise
are. During inferencing, when an agent tries to expand a formula whose content lies outside
its area of expertise, it determines (by consulting its own knowledge base or consulting with
a central knowledge-broker agent) whether another agent is available that might be able to
help. If so, the agent sends a message to its remote counterpart asking it to help expand the
formula in question. The answer may be a complete set of bindings, but more commonly it
is simply a partial result, still containing unbound variables. The local agent incorporates
the result into its own proof tree just as if it had done the work itself, and continues its
task. In many cases, the local agent may need to consult the remote agent, or several
remote agents, multiple times in the course of its inferencing process.

Cycorp has cooperated with the Computer Science Department of the University of
Maryland in Baltimore County (UMBC) to develop a demo of such a distributed architec-
ture. In the demo, three CYC agents communicate with each other using KQML. While
all three agents possess the same core knowledge base, each possesses additional knowledge
about an additional domain in which it is consider expert: the GeoAgent in geography, the
PolAgent in politics, and the EcoAgent in economics. Working together, they can answer
queries that no one of them could have answered alone.

For example, suppose a user asks the GeoAgent for “elected heads of government of
countries north of the equator”. This might be represented as:

($and

($headOfGovernmentOf ?x ?y)

($hasAttributes ?x $Elected)

($northOf ?y $Equator))

The GeoAgent is able to find bindings for the third clause by using its own knowledge
of the geography domain:

• Britain is in Europe.

• Europe is in the northern hemisphere.

• The northern hemisphere is north of the equator.

• If region A is part of region B, and region B is north of region C, then region A is
north of region C.

• Therefore, Britain is north of the

But to find bindings for the first two clauses, the GeoAgent must enlist outside help.
It sends these as queries to the PolAgent, which is able to find bindings for them using its
knowledge of politics domain:

• Heads of government of democratic countries are elected.

vii

• Great Britain is a democratic country. item Tony Blair is the head of government of
Britain.

• Therefore,Tony Blair is the elected head of government of Great Britain.

When the GeoAgent agent receives this answer back from the PolAgent, it combines it
with its own partial answer to produce the final result: Tony Blair.

An important research focus of the Cycorp/UMBC project has been optimizing the
implementation of collaborative inferencing so that the costs of managing the necessary
communications overhead are significantly outweighed by the increase in scope and effi-
ciency which result from sharing the inferencing workload.

It should also be pointed out that, while the description above assumes that all the
agents participating in the distributed architecture are CYC agents, this is not a require-
ment. Cycorp has defined a very simple protocol for implementing cooperative inferencing,
and any agent which has been taught to adhere to this protocol, and which possesses knowl-
edge of interest to other agents, can meaningfully participate in such an architecture. For
instance, the role normally played by a CYC agent in a distributed architecture could
equally well be filled by a gateway to

• an expert system implemented in Prolog

• an SQL database

• a special-purpose inferencing tool (e.g. for spatial inferencing)

• a human expert, etc.

In fact, the WWW Information Retrieval application, described next, builds on the
distributed CYC architecture by filling that role with a gateway to a WWW information
source.

A.6 WWW Information Retrieval

The explosion of the World Wide Web during the last two years has created a tremendous
opportunity. The WWW is home to a vast quantity of information, much of which could, in
principle, be used to make CYC more intelligent, while shortcutting the laborious process
of manual knowledge entry.

This could happen in one of two ways: either online information could be extracted,
converted to CycL, and incorporated directly into the knowledge base, or CYC could be
taught to treat external information sources as extensions of the KB, without directly
incorporating their contents.

Cycorp has explored the first approach during 1996 CYC is nearing the critical mass
required for the reading and assimilation of online texts (news stories, encyclopedia articles,
etc.). In this scenario, CYC’s natural language tools are used to process online texts,
converting them to CycL for inclusion in the knowledge base.

viii

Cycorp is also pursuing the second approach. In this scenario, we write gateways
which disguise WWW information sources as CYC agents (with a very limited domain of
expertise), available to operate in a distributed CYC architecture. There is a large and
ever-growing number of information sources on the WWW which might fill this role. All,
however, share the following characteristics:

• They embody a large corpus of knowledge,

• they can respond to HTTP queries for specific knowledge, and

• they present their knowledge in an HTML format which, while generally not as
regularly structured as a database, is sufficiently structured that it can be parsed by
a relatively simple algorithm.

An example is the Internet Movie Database, a truly stupendous compendium of movie
knowledge. A quick browse of the IMD demonstrates that it embodies virtually everything
there is to know about movies; that it can respond to queries for particular actors, movies,
etc.; and that it displays the results in a format, which, while it varies somewhat from one
actor, movie, etc. to another, depending on what information is available, is nevertheless
fairly regular.

The contents of the IMD can be annexed to the CYC KB by creating a gateway
which, on the one hand, interacts with CYC agents exactly as a CYC agent operating in
a distributed CYC architecture would, and, on the other hand, simulates the interaction
of a WWW browser with the IMD HTTP server.

This gateway is advertised to CYC as an expert in the movie domain, so that whenever
CYC receives a query in that domain, it turns to the gateway for assistance. For example,
let’s say a user asks CYC, “What movies did Ronald Reagan act in?”. This might be
represented in CycL as:

($actedInMovie $RonaldReagan ?x)

CYC hands this CycL query to the gateway, which understands enough about movie–
related CycL vocabulary to translate this query into an HTTP request to the IMD server
for a page on Ronald Reagan. When the IMD server returns the page, the gateway parses
the HTML, extracts a list of the movies in which Reagan appeared, converts the result to
CycL, and then constructs a suitable reply to the CYC agent making the request. (For
reasons not worth explaining, the reply contains more than just the answer.)

To the user interacting with CYC, this transaction is entirely transparent. It appears
to the user as if CYC now knows everything there is to know about movies, and yet the
KB still fits on the hard disk!

Enhancing CYC’s cinematic erudition may be a fairly frivolous application of the tech-
niques described above, but the WWW contains plenty of large sources of semi–structured
information on weightier topics (stock quotes, company profiles, WWW indexes, resumes,
the CIA World Factbook, etc.). The ability to effectively incorporate vast portions of

ix

the WWW into a ”virtual” knowledge base is a compelling possibility. Not only would it
greatly expand the effective scope of CYC’s knowledge, but it would do so at little cost to
the CYC development team.

x

