
PRIFYSGOL CYMRU; UNIVERSITY OF WALES

DEGREE EXAMINATIONS MAY/JUNE 2002

SWANSEA

Computer Science

 CS 332 Designing Algorithms

Attempt 2 questions out of 3

Time allowed: 2 hours

Students are permitted to use the dictionaries provided by the University

Students are NOT permitted to use calculators

CS 332
DESIGNING ALGORITHMS

(Attempt 2 questions out of 3)

Question 1

(a) State the (Simplified) Master Theorem, and use it to give asymptotically tight bounds for
each of the following recurrences.

(i) T(n) = 4T(bn/3c) + 2n.

(ii) T(n) = T(bn/3c) + 2.

(iii) T(n) = 9T(n/3) + n2. [8 marks]

(b) You are in the dungeon of the castle of the evil CS332 Professor, and you find a pot con-
taining n coins (n≥3). You know from CS332 legend that only one of these coins is an
authentic (and priceless) gold coin, while the remaining(n−1) coins are made from a cheap
gold-coloured alloy. The only way to distinguish the authentic coin from the others is by its
weight: CS332 legend has it that—while the authentic coin appears to be identical to the
cointerfeit coins—it actually has a slightly different weight than the counterfeit coins, all of
which are themselves identical in weight. (The legend does not stipulate whether or not the
real coin is heavier or lighter than the cointerfeit coins.)

You have come to steal the real coin from the evil CS332 Professor, but you want to leave
all of the other coins behind so that the evil CS332 Professor does not realize that the real
coin is gone. (Otherwise, in his fury he would fail all of his students, including yourself; and
in their fury your fellow students would inform on you.)

To discover the real coin, you have brought with you a balance scale
(like the one pictured) with which you can compare the weights of
two sets of coins: you can place piles of coins on both arms of
this scale and discover if one pile of coins is heavier than the other.
You also have a clever idea involving divide-and-conquer which you
learned from the CS332 Professor. (He’s not all bad after all!) You
need to find the real coin and get out before he discovers you.

'

&

$

%
(i) Describe a recursive Divide-and-Conquer algorithm for finding the real coin. Justify

that your algorithm is correct. (Hint: Start by dividing the coins into thirds.)
[6 marks]

(ii) Write down a recurrence relation forT(n) which represents the maximum number of
weighings your algorithm needs to make in order to find the real coin.

[3 marks]

(iii) Give an asymptotically tight bound forT(n).
[2 marks]

1

(c) Explain the information theoretic lower bound ofΩ(lg n) for the problem in part (b).
[6 marks]

2

Question 2

You bring an`-foot log of wood to your local sawmill. You want it cut inn specific places:
`1, `2, . . . , `n feet from the left end. The sawmill charges£x to cut anx-foot log any place you like.

0 = `0 `1 `2
· · · `i

· · · `j
· · · `n `n+1 = `

For example, suppose we wish to cut a log`=12-feet long at lengths̀1=2, `2=5, and`3=8 feet
from the left end. The first cut (regardless of where it is made) will cost£12, but the cost for the
two subsequent cuts will depend on the order in which the cuts are made (as the lengths of the
subsequent sublogs to be cut will be different). For example, cutting in the order`1, `2, `3 would
cost12 + 10 + 7 = £29, while cutting in the order̀2, `1, `3 would cost12 + 5 + 7 = £24. In this
example, it makes sense to start by cutting in the most central spot, to minimize the length of the
two remaining pieces.

(a) Consider a greedy algorithm that cuts the log so that the maximum length of the resulting
two pieces is always as small as possible; that is, it cuts it in the most central spot. Show that
this algorithm does not necessarily achieve the minimal cost, by giving an example in which
it fails to do so. (Hint: Consider making three cuts all close to the midpoint.)

[3 marks]

(b) Argue why Dynamic Programming is appropriate for this problem.
[4 marks]

Let c[i, j] (for 0 ≤ i < j ≤ n+1) be the optimal (i.e., least) cost of completely cutting the sublog
whose left endpoint is at̀i and whose right endpoint is at`j. We thus wish to computec[0, n+1].

(c) Give a recursive definition forc[i, j]. (Hint: Start by definingc[i, i+1], andc[i, i+2].)
[7 marks]

(d) Give pseudocode for a dynamic programming algorithm which computesc[0, n+1].
(Note: You donotneed to compute the optimal order itself, just the optimal cost.)

[7 marks]

(e) Analyze the run time and space requirement of this algorithm.
[4 marks]

3

Question 3

In theMajority Problem, we are given an arrayA[1..n] of n integers, and we must find the element
which appears more thann/2 times in the array, or report that no such majority element exists.
For example,

• the array[3, 5, 5, 2, 5] contains the majority element5;

• the array[3, 5, 5, 2, 5, 4] does not contain a majority element.

(a) Describe a O(n lg n) time algorithm which starts by sorting the array with, e.g., mergesort.
(You donot need to describe mergesort; and you needn’t give your solution in pseudocode.)

[3 marks]

(b) Describe a linear-time algorithm which makes use of the linear-time algorithm we devised
for selecting thekth smallest from an array ofn elements. (Hint: Thinkmedian.)

[3 marks]

(c) The algorithm to the right determines, with
some error probabilityp, whether or not an
arrayA[1..n] contains a majority element.

Explain when this algorithm gives a guaran-
teed correct result, and give a bound on the
error probabilityp of this algorithm in the
instances in which the result is not guaran-
teed to be correct. Explain your reasoning.

'

&

$

%

RANDOM-MAJORITY(A[1..n])

1 x← A[random(1..n)]

2 k← 0

3 for i← 1 to n do

4 if A[i] = x then k← k+1

5 if k ≥ dn/2e then return x

6 else return “no majority exists”

[3 marks]

(d) Here, we derive another linear-time algorithm which only relies on comparing elements for
equality: we can test if two elements are equal, but not if one is less than another. Thus it
can be used on arrays containing arbitrary incomparable elements, not just integers.

(i) Prove that ifA[i]6=A[j] then removingA[i] andA[j] from the array preserves the ma-
jority element, if it exists. That is, ifx is a majority element of the original array, then
x must still be a majority element of the shorter array with the two unequal elements
removed.

[5 marks]

(ii) Prove, using a suitable counter-example, that the converse of the above fact is false in
general. That is, give an array which has no majority element but the removal of two
unequal members produces a shorter array which does have a majority element.

[3 marks]

(iii) Using the above observations, design an algorithm for the majority problem which
runs in linear time. Present your algorithm in pseudocode, and justify its correctness
and running time.

[8 marks]

4

