PRIFYSGOL CYMRU; UNIVERSITY OF WALES
DEGREE EXAMINATIONS MAY/JUNE 2003

SWANSEA

Computer Science

CS 213 System Specification

Attempt 2 questions out of 3
Time allowed: 2 hours

Students are permitted to use the dictionaries provided by the University

Students are NOT permitted to use calculators

CS_213
SYSTEM SPECIFICATION

(Attempt 2 questions out of 3)
Question 1
(a) The following is a simple Maude module.

1. fmod BASIC-NAT is

2. sort Nat .

3. op 0 : -> Nat .

4. op s : Nat -> Nat .

5. op _+_ : Nat Nat -> Nat .
6. vars N M : Nat .

7. eq 0 + N =N .

8. eq s(M) + N =s(M + N) .
9. endfm

Briefly, explain what each numbered line means. In the usual definition of the natural
numbers, line 5 would normally look like this:

op + : Nat Nat -> Nat [propertyl propertyZ2] .
What are propertyl and property2? [10 Marks]

(b) The following Maude module represents part of the definition of an array in
Maude. However, the defining equations are missing. What are they? [S Marks]

fmod ARRAY is
sorts Array Index Data .

op [_] : Array Index -> Data .
op [/ 1 : Array Data Index -> Array .

var A : Array .
vars I J : Index .
var D : Data .

*** Equations should go here
endfm

(c) The following two Maude code fragments define eight-bit bytes, under the
assumption that sorts Bits representing arbitrary-length bit-strings, and Bit
representing a single bit, already exists.

Fragment (a)

sort Byte .

subsort Byte < Bits .

vars bl b2 b3 b4 b5 b6 b7 b8 : Bit .

mb (bl b2 b3 b4 b5 b6 b7 b8) : Byte .
Fragment (b)

sort Byte .

subsort Byte < Bits .

var B : Bits .

cmb B : Byte if |B| = 8 .

The operator | | : Bits -> MachinelInt returns the length of a bit-string.
Both fragments ‘work’, but one is a much better solution than the other. Which one,
and why? [5 Marks]

Question Continues Overleaf.

(d) The following Maude module represents a stack.
fmod STACK is

sorts Stack Elt .

op EmptyStack : -> Stack .
op ErrorElt : -> Elt .

op push : Stack Elt -> Stack .
op pop : Stack -> Stack .

op top : Stack -> Elt .

op isEmpty : Stack -> Bool .

Stack .
Elt .

var S :
var E :
eq isEmpty(EmptyStack) = true .
eq isEmpty(push(S,E)) = false .

eq top(EmptyStack) = ErrorElt .
eq top(push(S,E)) = E .

eq pop(EmptyStack) = EmptyStack .
eq pop(push(S,E)) = S .
endfm

Add a new operator swap to the module that swaps the top two elements on the stack.
That is, suppose that the top element of stack S is A, and the element below that is B.
After the application of swap to S, the top element is B, and the element below that is
A. The remainder of the stack is unaltered. You will need to consider what happens
when you try to apply swap to a stack that only contains one element. [S Marks]

Question 2

Consider a simple microprocessor with 16 registers each of 16-bits, a memory of 64K
16-bit words (i.e. memory addresses are 16-bits long), and a 16-bit program counter.
Instructions are 16-bits long: the first four bits are the opcode; the second four bits
code register A, the third four bits code register B; and the final four bits code
register C. There are four instructions

* Add Ra, Rb, Rc - Addregisters A and B, storing the result in register C.
Increment the program counter by 1. The opcode is 0000.

* Sub Ra, Rb, Rc - Subtractregister A from register B, storing the result
in register C. Increment the program counter by 1. The opcode is 0001.

* Load Ra, Rb, Rc - Addregisters A and B. Use the result as a memory
address and read a word from memory, storing the result in register C.
Increment the program counter by 1. The opcode is 0010.

* Store Ra, Rb, Rc - Addregisters A and B. Use the result as a memory
address and write register C to memory. Increment the program counter by 1.
The opcode is 0011.

* All other opcodes are invalid, and result in the program counter being set to:
I1111111111111111 — that is, the top-most word in memory.

You may assume the following are available.
* The module BINARY, containing sorts Bits (arbitrary-length bit-strings) and
Bit (single bits), and the usual range of logic and arithmetic operations.

Modules MEM and REG defining sorts Mem and Reg representing memory and

registers, as well as read and write operations on memory and registers.

* Sorts HalfWord of 16-bit words, and Nibble of 4-bit words have been
defined in terms of Bits and Bit.

* The operations opcode rega regb regc: HalfWord -> Nibble
that extract the opcode, register A, register B and register C fields from an
instruction.

* Addition and subtraction operations on 16-bit words _+ -

HalfWord HalfWord -> HalfWord .

* The built-in module MACHINE-INT.

(a) Write a Maude module defining the state of the microprocessor. Your module
should contain appropriate tupling and projection operators. Minor syntactic errors
will not be penalised. [5 Marks]

(b) Write a Maude module defining the behaviour of the microprocessor as an

iterated map. Your module should contain the iterated map function, as well as the
next-state function. Minor syntactic errors will not be penalised. [10 Marks]

Question Continues Overleaf.

(c) The current instruction set of the microprocessor is inadequate because there are
no flow control instructions. Informally define four instructions that do the following.

* Unconditional Jump.

* Conditional Jump.

* Subroutine Call.

* Return from Subroutine.
It is suggested that you retain the same format (i.e. opcode, registerA, registerB,
register(C) of the existing instructions. However, you may find that in some cases not
all the fields are necessary.

Extend your answer to part (b) to incorporate Maude representations of the new
instructions. Minor syntactic errors will not be penalised. [10 Marks]

Question 3

(a) Explain informally, perhaps with the help of some simple examples, what it means
for a term rewriting system to be terminating and confluent. [S Marks]

(b) Consider the following simple Maude module.

fmod BASIC-NAT is
sort Nat .

op O -> Nat .
op s Nat -> Nat .
op + : Nat Nat -> Nat .

vars N M : Nat .
eq 0+ N =N .

eq s(M) + N =s(M + N) .
endfm

Explain how the following expression would be re-written in
Maude, using the module above:

s(s(s(0))) + s(s(0))

Consider the following expression, in which N is a variable
of sort Nat:

(s(s(0)) + N) == (N + s(s(0)))

What does this reduce to and why?
[5 Marks]

(c) The following Maude module represents a multiplexor.

fmod MUX is
protecting MACHINE-INT .

sort BoolStr .

op (_) : BoolStr MachineInt -> Bool .
op mux : BoolStr BoolStr BoolStr -> BoolStr .

vars X Y B : BoolStr .
var T : MachineInt .

ceqg mux(X,Y,B)(T)
ceq mux(X,Y,B)(T)
endfm

X(T) if B(T) == true .
Y(T) if B(T) == false .

Modify the multiplexor module so that outputs at time T are the result of inputs that
arrive at time T—1 instead of time T. [5 Marks]

(d) The following is an informal description of a simple
counter. The output of the counter is a stream of Integers.
The inputs to the counter are two streams of Booleans.

* stopStart — when a true element arrives on this stream
at time T, the counter stops. That is, the output at
time T is equal to the output at time T-1. Otherwise,
the output at time T will be either one greater or one
less than the output at time T-1 (depending on the
value on the stream upDown below).

* upDown — when a true element arrives on this stream at
time T, the output of the counter at time T will be
one greater than the output at time T-1, provided the
counter is not stopped. Otherwise, the output at time
T will be one less than the output at time T-1,
provided the counter is not stopped.

* At time T == 0, the output of the counter is 0 —
regardless of the values on the input streams.

Write a Maude module formally defining the behaviour of

the counter. Minor syntactic errors will not be

penalised. [10 Marks]

