
CS 116 (2005-2006)
MODELLING COMPUTING SYSTEMS

(Attempt 2 questions out of 3)

Question 1

(a) In the game ofNIM, an arbitrary number of piles of coins are formed, each with an arbitrary
number of coins in them, and two players alternate in removing one or more coins from any
one pile. Whoever takes the last coin is declared to be the winner.

Consider the game played with three piles where one of the piles has exactly one coin; that
is, from the configuration〈1, m, n〉 where (without loss of generality)1≤m≤n.

(i) Who has the winning strategy whenm=1, ie, in the game〈1, 1, n〉?
Justify your answer. [2 marks]

(ii) Who has the winning strategy whenm=n, ie, in the game〈1, m, m〉?
Justify your answer. [2 marks]

(iii) Who has the winning strategy whenm=2 andn=3, ie, in the game〈1, 2, 3〉?
Justify your answer. [2 marks]

(iv) Who has the winning strategy whenm=2 andn>3, ie, in the game〈1, 2, n〉with n>3?
Justify your answer. [2 marks]

(v) Argue that the second player has the winning strategy when m is even andn=m+1.
[3 marks]

(vi) Argue that the first player has the winning strategy in all cases other than those given
in (v) above. [3 marks]

(b) In POOR MAN’S NIM, there is only one pile, and the two players alternately remove either
1, 2 or 3 coins from the pile. Again, the player to take the lastcoin wins.

(i) For each numbern from 1 to 10, explain who has the winning strategy in POOR MAN ’ S

NIM starting from a pile ofn coins. In the cases in which the first player has the
winning strategy, state how many coins (1, 2 or 3) the first player should take.

[5 marks]

(ii) Generalize the above by explaining who has the winning strategy in POOR MAN ’ S

NIM starting from a pile ofn coins for an arbitraryn.
[3 marks]

(iii) Generalise the above further by explaining who has thewinning strategy in POOR

MAN ’ S NIM starting from a pile ofn coins for an arbitraryn, but where players may
alternately remove between 1 and k coins (above, we had k = 3).

[3 marks]

1



Question 2

In this question we re-examine the Railway Level Crossing System (see the following page).

(a) Consider thesafety property that a car may not cross at the same time as a train.

(i) Explain informally why this property is satisfied at every state of the System.

(ii) Give an expression of the modal logicM which expresses this property.
[5 marks]

(b) Consider theliveness property that if a car arrives, eventually the barrier may goup.

(i) Explain informally why this property is satisfied at every state of the System.

(ii) How does this property differ from the property that if acar arrives, eventually the
barrierwill go up.

[5 marks]

Normally, a barrier remains up until a train arrives; this signals the controller, which then lowers
the barrier, then turns the signal green, then turns the signal red again, and finally raises the barrier
once again. The new controller C is thus represented by the following LTS:

C green

signal

up

down

red

(c) Give a definition for C. (This includes defining its sortL(C).)
[5 marks]

(d) Give the definitions and associated LTS for the new Road and Rail systems Ro and Ra,
respectively, which correspond to the new Controller C. (Keep in mind that the new Road
system starts in a state where the barrier is up; and the new Rail system must signal the
controller when a train arrives, using the new event “signal” common to their sorts.)

[5 marks]

(e) Now consider the liveness properties again.

(i) Is it now the case that, if the barrier is down when a car arrives, then the barrier will
eventually go up?

(ii) Is it now the case that, if the signal is red when a train arrives, then the signal will
eventually turn green?

[5 marks]

2



The Railway Level Crossing System

Concurrent Processes

E jj F: Executing processes E and F concurrently.

::::::::::::::::::::::::::::::::::::::::::::::Synchronisation Sorts� Each process E has a ::::::::::::::::::::::::::::::::::::::::::::synchronisation sort L(E).� Every state of a process has the same sort.� Processes running concurrently must synchronise on
actions which are common to their respective sorts.� L(E jjE) = L(E) [ L(F)::::::::::::::::::::::::::::::::::::::::::::::::Synchronisation Merge : E jj F
If E a! E 0 and a =2 L(F) then EjjF a! E 0jjF.

If F a! F 0 and a =2 L(E) then EjjF a! EjjF 0.
If E a! E 0 and F a! F 0 and a 2 L(E) [ L(F)

then EjjF a! E 0jjF 0.
1

Example: Railway Level Crossing

Consider the following railway level crossing.'

&

$

%

Rail

Road

tcross

train

ca
r

cc
ro

ss

green
red

up
down

We can view this as three processes working in parallel:� A Rail process, which represents the arrival of trains,
assuring that they only cross if the signal is green.� A Road process, which represents the arrival of cars,
assuring that they only cross if the barrier is up.� A Controller process, which regulates the signal
and barrier, assuring that the barrier is never up at
the same time that the signal is green.

2

Railway Components�Æ �
Road
def= car.up.ccross.down.Road

Road car

ccross

down up L(Road) = f up, down g
�Æ �
Rail

def= train.green.tcross.red.Rail

Rail train

tcross

red green L(Rail) = f green, red g
�
�

�
�Controller

def= green.red.Controller+ up.down.Controller

Controller

green

down

red

up

L(Controller) = f green, red,
up, down g

3

The Complete Railway System�� ��Crossing
def= Road jj Controller jj Rail

Road Controller Rail
up

down

green

red

Crossing

down

cc
ross

up

ca
r

cc
ross

up

ca
r

ca
r

ca
r

down

redgreen

green

train

train

train

train

tcross

tcross
red

::::::::::::::::::::::::::::::::::::::::::Desirable Properties :::::::::::::::::::::::::::::::::::::Safety Properties : (::::::::::::::::::::::::No crashes)� A car may not cross at the same time as a train.:::::::::::::::::::::::::::::::::::::::::Liveness Properties : (:::::::::::::::::::::::::::::::::::Eventual service)� If a car arrives, eventually the barrier may go up.� If a train arrives, eventually the signal may turn green.

4

3



Question 3

(a) The syntax of the Modal LogicM is given by the following BNF equation:

P, Q ::= true | false | P ∨ Q | P ∧ Q | 〈a〉P | [a]P

wherea denotes an action.

(i) Define the satisfaction relationE |= P, whereE is a process andP is a term ofM. That
is, for each propertyP of M, say when a processE satisfiesP. Your definition should
look as follows (the definitions in the first two cases are provided):

E |= true is always true

E |= false is never true

E |= P ∨ Q iff · · ·

E |= P ∧ Q iff · · ·

E |= 〈a〉P iff · · ·

E |= [a]P iff · · ·

[6 marks]

(ii) Define the negationP of a propertyP of M. That is, for each propertyP of M, give
a propertyP which is true of a state if and only ifP is not true in that state. Your
definition should look as follows (the definitions in the firsttwo cases are provided):

true = false

false = true

P ∨ Q = · · ·

P ∧ Q = · · ·

〈a〉P = · · ·

[a]P = · · ·

[3 marks]

(iii) Define the modal depthmd(P) of a propertyP of M. Your definition should look as
follows (the definitions in the first two cases are provided):

md(true) = 0

md(false) = 0

md(P ∨ Q) = · · ·

md(P ∧ Q) = · · ·

md(〈a〉P) = · · ·

md([a]P) = · · ·

[3 marks]

(b) Consider the following two processes:

E
def
= a.(b.0 + c.0) F

def
= a.b.0 + a.c.0

(i) Draw the LTS for the process termE+F. Use as few states as possible, and label every
state with the process term it represents.

[3 marks]

(ii) Give propertiesP andQ of M such thatE |= P andF |= Q, butE 6|= Q andF 6|= P.
[6 marks]

(iii) Give a propertyR of M such thatE |= R andF |= R butE + F 6|= R.
[4 marks]

4


