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CS _423
ALGEBRAIC SPECIFICATION OF SOFTWARE AND HARDWARE

(Attempt 2 questions out of 3)

Question 1
(a) Let φ : X  →  Y and f: A →  B be functions. Using equations and commutative

diagrams, give four ways of to formalise the idea that
“φ is an abstract or high-level version of f”

using mappings α and β that represent the data in X and Y by data in A and B,
respectively. Show there are precisely four ways.

[5 marks]

(b) Define the ideas of right inverse and left inverse to a map and explain their connection
with injections and surjections.

[4 marks]

(c)  Define what is meant by a retiming of two discrete clocks T and R.

Which of the following maps λ: T  → R is a retiming? For any map that is a retiming
give its kernel ≡λ, its factor set T/≡λ, and a section λ*:

λ(t) = 10t;
λ(t) =  log2(t);
λ(t) = 2t;
λ(t) =  t/25 .

 [7 marks]

(d) Explain the ideas of (i) digital data and (ii) analogue data.

Show how to define the concept of an digital data type using
homomorphisms.

[6 marks]

(e) Use one of the equational methods of formalising hierarchical structure in part (a) to
define the correctness of a compiler

Compile:ProgSource   →  ProgTarget

under input-output semantics over state spaces StateSource and StateTarget.

[3 marks]



Question 2

(a) Consider the following two retimings:

€ 

(1) λ :N+ → Ret(S,T)
λ(a)(s) = s/a 

(2) κ :N+ → Ret(S,T)
κ(a)(s) = loga (s)

Why is retiming λuniform but κ not? Write down a definition of λ in terms of a duration
function.     [5 marks]

(b) Consider the following simple initialised iterated map, intended to enumerate odd
numbers:

€ 

F :T ×N→N
F(0,a) = h(a)
F(t +1,a) = F(t,a) + 2
If we define h as h(a)=1, then F is not time-consistent. If we define h as

€ 

h(a) =
a, if a odd;

a +1, otherwise
 
 
 

then F is time-consistent. Why is this?     [5 marks]

(c) Formally state the one-step theorems, that can eliminate induction from the verification of
microprocessors under specific conditions. Your answer should also include a statement of
the conditions.    [10 marks]

(d) Explain informally why the one-step theorems work.     [5 marks]

  Question 3

(a) Term rewriting is the basis of Maude and our methods for modelling and verifying
microprocessor descriptions. Explain what it means for a set of rewrite rules to be:

• Terminating and Confluent.
• Terminating but not Confluent.
• Neither Terminating nor Confluent.

 We commonly wish to translate sets of equations into rewrite rules. Give examples of simple
and common properties, easily represented using equations, which require special treatment
with rewrite rules.     [5 marks]

(b) Explain how membership axioms  in Maude make it possible to define a range of sorts
representing fixed-length sequences of bits, given an algebra defining the behaviour of
arbitrary bit strings. Give examples in your answer.  [5 marks]



(c) The following Maude code is used to verify the correctness of the implementation of a
microprocessor against some specification, in conjunction with another module GET-
CASE (omitted) that includes the operations getCase and AddEquation. In addition,
each case operator is equationally defined.

• Explain how the code works, paying particular attention to CheckEquals and
its subfunctions.

• Explain how conditional statements must be written in the description of the
implementation of a microprocessor in order for the code to work.

• Explain the major weakness of this method.
[15 marks]

fmod META-CASE is
protecting META-LEVEL .
protecting GET-CASE .

op CORR : -> Module .
eq CORR = (fmod 'CORR is

including 'CORRECT .
sorts none .
none none none none none

endfm) .

vars T1 T2 C1 C2 C3 : Term .
var TL : TermList .
var MOD : Module .

op CheckEquals : Module Term Term -> Bool .
op CheckEqualsAux : Module Term Term -> Bool .
op CheckEqualsAux2 : Module Term Term Term -> Bool .

eq CheckEquals(MOD, T1, T2) =
CheckEqualsAux(MOD, T1, meta-reduce(MOD, T2)) .

eq CheckEqualsAux(MOD, T1, T2) =
CheckEqualsAux2(MOD, T1, T2, getCase(T2)) .

eq CheckEqualsAux2(MOD, T1, T2, error*) =
meta-reduce(MOD, T1) == T2 .

eq CheckEqualsAux2(MOD, T1, T2,
       'case[C1,'_:_[C2,C3]])

= CheckEquals(AddEquation(MOD,C1,C2), T1, T2) .

eq CheckEqualsAux2(MOD, T1, T2,
       'case[C1,'_:_[C2,C3],TL])

= CheckEquals(AddEquation(MOD,C1,C2), T1, T2)
  and CheckEqualsAux2(MOD, T1, T2, 'case[C1,TL]) .

endfm




