CS_213 System Specification — May/June 2006
(Attempt 2 questions out of 3)

Question 1.

(a.)

(b.)

Consider the following specification of lists consisting of the sorts Int, NeList (for
non-empty lists) and List. The constructors are nil and __ (for concatenating two
lists or a list and one integer element). 1 nil , 1 2 3 nil are examples for lists.

The tag id: nil means that nil is an ‘identity’ element. That is, for instance,
123 isthesameas 1 2 3 nil or nil 1 2 3

fmod LIST is
protecting INT .
sorts List NelList
subsorts Int < NelList < List
op nil : -> List [ctor]

op __ : List List -> List [ctor id: nil]

op __ : List NeList -> List [ctor id: nil]

op __ : NeList List -> List [ctor id: nil]
endfm

i) Explain in general the meaning of the tags assoc and comm and discuss whether
they should be added to the specification of LIST.

ii) Extend the module LIST by operators
head, tail, length, reverse, isEmpty, and isOrdered

as well as their defining equations (with the usual meaning). isOrdered(L) should
be true if (and only if) all elements in the list L are strictly ascending.

[12 marks]

A palindrome is a list that reads the same from the front and from the back. For
instance, 4 3 4 and 2 4 3 3 4 2 are palindromes, but 2 4 5 5 2 is not.

Show two different ways of specifying palindromes, first by extending the module LIST
by an appropriate operator which tests whether or not a given list is a palindrome,
second by defining an appropriate subsort with a (non-conditional) membership axiom.

[6 marks]

Let A,B be constants and consider the reduction system given by the following set of
rules:

A =B
AB = AAB

Decide whether the given reduction system is

— terminating,
— locally confluent,

— globally confluent.

Discuss whether or not each term has a normal form.
Justify all your answers.
[7 marks]



Question 2.

(a.)

What do we mean by formal methods? Give reasons why algebras are particularly
useful for writing specifications. What is the role of initial algebras? [Two marks for
each of these three questions.|

[6 marks]

A multiplexor has as input three streams of booleans and produces an output stream of
booleans. At each time T the value on the output stream is either the current value on
the first or on the second stream, depending on the value of the third input stream, the
control stream. If a true element arrives on the control stream, the current element
of the first stream can ‘pass’, otherwise, that is, if a false element arrives, then the
current element on the second stream becomes the new value on the output stream.

Complete the following module which specifies the behaviour of the multiplexor.

fmod MUX is
protecting Int
sort Boolstr .
Op Mux :
op _()
vars X Y C :
var T :

[5 marks]

Consider the following convolving function which takes as input an integer stream and
produces as output a new stream which depends on the input stream. At each time T
the output stream shows the sum of the last three elements which have arrived on the
input stream up to (and including) time T.

Write a module that specifies the behaviour of the convolver.

[5 marks]

The following is an implementation of the convolver specification given in part (b). It
uses an inner product step processor.

fmod IPS is
protecting INT .

sort IntStr .
sort IPSTuple .
sort IPSstr .

op _(_) : IPSstr Int -> IPSTuple [prec 1]
_() IntStr Int -> Int [prec 1]
op U : -> Int .

(Question continues on the next page)



op _,_,_ : Int Int Int -> IPSTuple .
op _,_,_ : IntStr IntStr IntStr -> IPSstr .
op ips : IPSTuple -> IPSTuple .

vars A B C : Int .
var T : Int .

ceq ips(A,B,C) = (U,U,U) if (A ==1U) or (B == U) or (C == 1)
eq ips(A,B,C) = (A, B, A * B + C) [owise]
endfm

fmod CONV-IMP is
protecting IPS .

sort ConvState .

op _,_,_ : IPSTuple IPSTuple IPSTuple -> ConvState .
op convimp : Int IntStr -> ConvState .

ops convl conv2 conv3 : Int IntStr -> IPSTuple .

op C : IPSTuple -> Int .

var X : IntStr .

var T : Int .

vars I J K : Int .

eq C(I,J,K) =K .

eq convImp(T,X) = (convi(T,X), conv2(T,X), conv3(T,X))

eq convl(T,X)

eq conv2(T,X)

eq conv3(T,X)
endfm

ips(1,X(T - 2),0)
ips(1,X(T - 1), C(convi(T - 1, X)))
ips(1,X(T), C(conv2(T - 1, X)))

Explain, for example by drawing a diagram, how this implementation works. Define
a module CONVIMP-RUN containing a sample stream which can be used to test the
implementation.

[4 marks]

Explain the concepts of a data abstraction map and retiming. Define the data abstrac-
tion map for the convolver example given in (c) and (d).

[5 marks]



Question 3.

In this question, you should specify a microprocessor which consists of
— a memory containing 16-bit words (where memory addresses are 12 bits long),
— an accumulator (16 bits), and

— a program counter (12 bits).

Instructions are 16 bits long: the first four bits are the opcode and the remaining bits form
an address. The first three instructions are

Add L: Add the accumulator to memory location L (that means: add the content of the
accumulator to the content of the memory field with address L) and write the result

to the accumulator. Increment the program counter. The opcode for this instruction
isO 0 0 0.

Store L: Write the accumulator to memory location L. Set the accumulator to the word 0.
Increment the program counter. The opcode is 0 0 0 1.

SkipIfZero L: If the memory location L is 0, then increment the program counter by 2;
otherwise increment the program counter by 1. The opcode is 0 0 1 0.

You may assume that the following are available: the module INT, and the module BINARY
(containing sorts Bits and Bit as well as the usual range of logical and arithmetic opera-
tions). Further you have sorts Word(16 bits) and Address(12 bits), defined in terms of Bits
and Bit, as well as the operation _+_ and appropriate constants (denoted by 0, 1 and 2)

for the sorts Word and Address. Finally, you also have a module MEM specifying the memory
of the microprocessor.

(a.) Define a new sort opfield which may be used to specify the opcode of an instruction.
Specify operators opcode and opfield which determine the opcode and the address
part of a given instruction. (Note you do not have to define the full module.)

[5 marks]

(b.) Write a module STATE that specifies the state of the microprocessor. Your module
should contain appropriate tupling and projection operators.

[4 marks]

(c.) Write a Maude module defining the behaviour of the microprocessor as an iterated
map. Your module should contain the iterated map state function, as well as the
next-state function.

[9 marks]

(d.) The current instruction set of the microprocessor is inadequate because there are no
flow control instructions. Informally, define and explain an indirect jump and a jump
to a subroutine analoguously to the one in the PDP8. (Remember the PDP8 stores
the current PC at the first memory address of the subroutine.) Finally, add a formal
specification of these two jump instructions. [7 marks]



