
CS-343
Algebraic Specification of Software and Hardware

(Answer 2 questions out of 3)

Question 1

a) Give the definitions of

i) a signature Σ.
ii) a Σ-algebra A.

[8 marks]

b) byte, int, long are among Java’s integral types. Consider the following (slighlty
shortened) description of operations on integral types in Java:

The Java programming language provides a number of operators
that act on integral values:

* The comparison operators, which result in a value of
type boolean:
o The numerical comparison operators <, <=, >, and >=
o The numerical equality operators == and !=

* The numerical operators, which result in a value of
type int or long:
o The unary plus and minus operators + and -
o The multiplicative operators *, /, %

(From J.Gosling, B.Joy, G.Steele, G.Bracha: The Java Language Specification)

Write a CASL specification that makes the above described signature precise for the
integral type byte. Give short explanations for your choice of partial or total function
symbols.

Hint: It might be useful to consider the ranges of the different integral types as defined
below.

The values of the integral types are integers in the following ranges:
* For byte, from -128 to 127, inclusive
* For short, from -32768 to 32767, inclusive
* For int, from -2147483648 to 2147483647, inclusive
* For long, from -9223372036854775808 to 9223372036854775807, inclusive
* For char, from ’\u0000’ to ’\uffff’ inclusive, that is, from 0 to 65535

[10 marks]

Question 1 continues on the next page

c) Specify a XOR-gate in CASL.

A XOR-gate is a hardware element, that takes two incoming bit streams A and B
and produces one outgoing bit stream O, where O is ’true’ if and only if A and B
were different one clock signal earlier.

You may use the following specification fragment in order to import the specifications
of the natural numbers and the specification of the booleans from the CASL standard
library:

spec XOR =
Nat

then
Boolean

then
...

Specification fragments of Nat and Boolean can be found at the end of this paper.

[7 marks]

2

Question 2

a) i) What is a specification?

ii) What does it mean for a specification to be precise?

iii) Give an example of an inconsistent specification in natural language. Explain
the inconsistency.

[2 + 2 + 4 = 8 marks]

b) Consider the following loose specification of a file system in CASL:

library Filesystem version 1.0

spec Data =
sorts File,Attribute,FileAndAttribute
ops first : FileAndAttribute → File;

snd : FileAndAttribute → Attribute;
combine : File ×Attribute → FileAndAttribute;

end

spec State = Data
then

sort State
op setAttr : State × FileAndAttribute → State;

getAttr : State × File →? Attribute;
initial : State;

end

A File is something that can have attributes. An Attribute could, for instance, be the
content of the file, or the name of the file, or information on access rights.FileAndAttribute
combines a File with its Attributes into one entity. first and snd are projections on
the components, combine glues two components together into one entity.

i) Give three algebras A, B, and C out of the model-class of the specification
Data, where

• A shall be an intended model,
• B shall be a model with confusion in the carrier set of FileAndAttribute,

and
• C shall be a model with junk in the carrier set of FileAndAttribute.

Hint: You can work with arbitrary carrier sets for File and Attributes.

[9 marks]

Question 2 continues on the next page

3

ii) Express the properties

• ‘no confusion’ in the carrier of FileAndAttribute, and
• ‘no junk’ in the carrier of FileAndAttribute

by first-order formulae in CASL.

[4 marks]

A file system can store a FileAndAttribute in its State. From there, the attributes
of a file can be retrieved by getAttr . This is a partial function, as one might ask for
information on a non-existing file. The function setAttr allows to change the state of
the file system by adding a file or changing the attributes of a file. There is also an
initialState, in which no file is known to the file system.

iii) Formulate in CASL the following properties using the signature provided by the
specification State:

• In the initial state the function getAttr is undefined.
• The function getAttr yields for a file the last attribute that was set for it.

[4 marks]

4

Question 3

a) Give a sketch of the Waterfall-model of software-development and indicate, what kind
of languages are used in its different phases. [4 marks]

b) Let Σ be the signature extracted from the CASL specification Nat below. Find four
Σ-equations, which hold in the Σ-algebra A but not in the Σ-algebra B.

spec Nat =
sort Nat ;
ops 0 : Nat ;

suc : Nat → Nat ;
+ , ∗ : Nat ×Nat → Nat ;

end

Algebra A : A(Nat) = N; (natural numbers)
A(0) = 0;
A(suc)(N) = N+1;
A(+)(M,N) = M+N;
A(*)(M,N) = M*N;

Algebra B : B(Nat) = N;
B(0) = 0;
B(suc)(N) = N+1;
B(+)(M,N) = M*N;
B(*)(M,N) = M+N;

[8 marks]

c) Specify the Mergesort-Algorithm for natural numbers in CASL.

A short reminder of Mergesort: Mergesort is based on the divide-and-conquer
paradigm. Here is the three step divide-and-conquer process for sorting a list L:

Divide: Divide the n element list L into two sublists L1 and L2 of n/2 (or (n+1)/2
and (n− 1)/2, if n is odd) elements each.

Conquer: The two lists L1 and L2 are sorted by recursive calls to mergesort.
Combine: Merge the sorted version of the list L1 and the sorted version of the list

L2.

You may use the following specification fragment in order to import the specifications
of lists from the CASL standard library:

spec MergeSort =
List[Nat fit sort Elem |-> Nat] with sort List[Nat] |-> List

then
...

Specification fragments of Nat and Boolean can be found at the end of this paper.

[13 marks]

5

Useful specifications from the CASL standard library

spec Nat =
free type Nat ::= 0 | suc(pre:? Nat)
preds __ <= __, __ >= __,

__ < __, __ > __: Nat * Nat;
even, odd: Nat

ops __! : Nat -> Nat;
__ + __, __ * __, __ ^ __,
min, max, __ -!__ : Nat * Nat -> Nat;
__ -?__, __ /? __,
__ div __, __ mod __: Nat * Nat ->? Nat;

...
end

spec Boolean =
free type Boolean ::= True | False
ops Not__ : Boolean -> Boolean;

__And__, __Or__ : Boolean * Boolean -> Boolean
forall x,y:Boolean
. Not(False) = True %(Not_False)%
. Not(True) = False %(Not_True)%
. False And False = False %(And_def1)%
. False And True = False %(And_def2)%
. True And False = False %(And_def3)%
. True And True = True %(And_def4)%
. x Or y = Not(Not(x) And Not(y)) %(Or_def)%

end

spec GenerateList [sort Elem] =
free type List[Elem] ::= [] | __ :: __ (first:? Elem; rest:? List[Elem])

end
spec List [sort Elem] given Nat = GenerateList[sort Elem] then

pred isEmpty: List[Elem];
__eps__: Elem * List[Elem]

ops __ + __ : List[Elem] * Elem -> List[Elem];
first, last: List[Elem] ->? Elem;
front, rest: List[Elem] ->? List[Elem];
#__: List[Elem] -> Nat;
__ ++ __ : List[Elem] * List[Elem] -> List[Elem];
reverse: List[Elem] -> List[Elem];
__ ! __: List[Elem] * Nat ->? Elem;
take,drop: Nat * List[Elem] ->? List[Elem];
freq: List[Elem] * Elem -> Nat

...
end

6

