CS_221 Functional Programming I

(Attempt 2 questions out of 3)

Preliminary remark: By a function we mean a Haskell function, and by the definition of a function

the signature of that function (that is, the statement of the type of the function) followed by its
defining equations.

Question 1

(a) (i) What are the types of the following values?
(i-1) Ca’,’b’)
(i-2) [’a’,’b’]
(i-3) [taill

(ii) What are the types of the following functions?
(ii-1) pair xy = (x,y)
(ii-2) 1list2 x y = [x,y]
(ii-3) diag f x

f xx

(iii) What are the values of the following expressions?
(iii-1) length (filter even [1..5])
(iii-2) map length [[x..3] | x <- [1..3]]
(iii-3) (\g > \x > g (g x)) (x 3) 2

[9 marks]

(b) Define a function evens that takes as inputs an integer n and a function £ :: Int -> Int, and
computes the list of all positive integers x below n such that £ x is even.

[8 marks]

(c) Consider the following function:

inc :: [Int] -> Bool
inc [] = True
inc [x] = True

inc (x:xs) x < head xs && inc xs

(i) Describe informally what this function does.

(ii) Generalise the signature of this function using a suitable type constraint. Explain informally
what the generalised signature means.

[8 marks]



Question 2

(a) (i) Briefly describe Haskell’s evaluation strategy.
(ii) Name an advantage and a disadvantage of this strategy.
[7 marks]

(b) In Haskell’s Prelude file the function uncurry is defined as follows:

uncurry :: (@ ->b ->c) -> ((a,b) > ¢)
uncurry f p = f (fst p) (snd p)

Consider the following variant:

uncurryl it (@ =>b ->c) -> ((a,b) -> ¢)
uncurryl f (x,y) =1£f xy

Explain why uncurry and uncurryl are not equivalent under Haskell’s evaluation strategy. Give
an example

fxy=...
p= ...

such that the expressions uncurry f p and uncurryl f p behave differently when evaluated.
[8 marks]

(c) (i) Consider the following definition:

(+#+) :: [a] > [a] > [al
(] ++ ys = ys
(x:x8) ++ ys = x : (ys ++ zs)

Prove
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
by list induction on xs.

(ii) Consider the following definitions:
data Tree = Leaf Int | Branch Tree Tree
flatten :: Tree -> [Int]

flatten (Leaf x) = [x]
flatten (Branch t1 t2) (flatten t1) ++ (flatten t2)

flattenl :: Tree -> [Int] -> [Int]
flattenl (Leaf x) xs = x : Xs
flattenl (Branch t1 t2) xs flattenl t1 (flattenl t2 xs)

Prove
flattenl t xs = flatten t ++ Xs

by tree induction on t.
[10 marks]



Question 3

(a) Define a function
partition :: Int -> [a]l -> [[a]]

such that for a positive integer n and a list xs, partition n xs partitions xs into parts of length
n where the last part might be shorter than n. For example, partition 3 [1,2,3,4,5,6,7]
should yield [[1,2,3],[4,5,6],[7]].

Hint: Define partition n xs by recursion on xs using the library functions

take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [al

[7 marks]

(b) Suppose that a polymorphic abstract data type of finite sets is to be implemented by repetition-
free lists:

type Set a = [a]

(i) Define, as part of this implementation, a function
intersect :: Eq a => Set a -> Set a -> Set a

that computes the intersection of two sets.

(ii) Suppose we restrict the type parameter a to types for which an ordering, <, is defined, that
is, we require the type a to be a member of the type class Ord.

Give a more efficient implementation of the function intersect for sets represented by
repetition-free ordered lists.

(iii) Estimate the run time complexities of the functions you defined in (i) and (ii).

[10 marks]

(c¢) (i) Briefly describe how functions with side effects can be programmed in Haskell. Give an
example of a function with side effect.

(ii) Briefly explain Haskell’s do-notation. What is it syntactic sugar for?
[8 marks]



