CS_221 Functional Programming I
(Attempt 2 questions out of 3)

Preliminary remark: By a function we mean a Haskell function, and by the definition of a function
we mean the defining equations of that function preceeded by its signature.

Question 1.

(a) (i) Define a function that sorts a list of integers in ascending order.

(ii) Use a type constraint to define a polymorphic generalization of your sorting function that
works for all types that are members of the type class Ord.

[8 marks]

(b) Consider the following Haskell type of binary trees labeled by integers:
data Tree = Null | Node Tree Int Tree

(i) Define a function that computes the sum of the labels of a tree.
(ii) Consider the following function that computes the list of labels of a tree in prefix-order:
preord :: Tree -> [Int]

preord Null = [1]
preord (Node s n t) [n] ++ (preord s ++ preord t)

Suppose s and t are trees, both different from Null and having different labels at their
roots.

How many computation steps does it take Haskell to evaluate the expression
preord s == preord ¢

(assuming that equality of integers is computed in one step)?
Does the number of computation steps depend on the sizes of the trees?

Which evaluation strategy does Haskell apply? Discuss how the computation time would
change if a different evaluation strategy were used.

In your calculation use the definition of (++) given in question 2 (a) and the following
definitions of equality on lists:

(==) :: Eq a => [a] -> Bool

(] == [] = True

(x:x8) == (y:ys) = if x == y then xs == ys else False
== = False

[11 marks]

(c) What are the values of the following expressions?

(i) \f > \x => f (f x)) (2°) 3
(ii) map even [0,1,2,3,4]
(iii) [toLower c¢c | ¢ <- "4 You!" , isAlpha c]

[6 marks]

Question 2.

(a)

Consider the following definitions:

(++) :: [al > [a] -> [a]

(l ++ ys = ys
(x:xs) ++ ys =x : (xs ++ ys)
reverse :: [a] -> [al
reverse [] = [

reverse (x : Xs) = reverse xs ++ [x]
Prove that
reverse (xs ++ ys) = reverse ys ++ reverse Xs

holds for all finite lists xs and ys.

You may use without proof that (++) is associative and that xs ++ [] = xs holds.
[7 marks]

We model a shopping basket as a list of pairs (name, price) where name is a string and price is
an integer.

Define a function that, for any shopping basket and any integer maxprice, computes the list of
all names in the basket that are more expensive than mazprice.

[6 marks]

Suppose it is your task to design a polymorphic abstract data type of sets of elements of a given
type a. As possible representations of sets you consider boolean functions and lists:

MkSet1l (a -> Bool)
MkSet2 [al]

newtype Setl a
newtype Set2 a

Define, for each of these representations, the following functions, with the appropriate class
constraint on a, or say why a definition is not possible:

(i) isEmpty, testing whether a set is empty;

)
(i)
)

)

member, testing whether an element is a member of a set;
(iii) insert, inserting an element into a set;

(iv) complement, computing the complement of a set s, that is, the set of those elements that
are not in s.

[12 marks]

Question 3.

(a)

(i)

In Haskell, a type can be defined using one of the keywords, data, type, or newtype.
Explain the characteristics of these different ways of defining types. In which cases can
functions be defined by pattern matching? You may use simple examples to underpin your
explanations.

What is a Haskell type class? What is it used for? How can a type become an instance of
a type class? Give an example.

[8 marks]

Define a polymorphic higher-order function testAll that for a given boolean function
p :: a -> Bool and a list xs :: [a] tests whether p x evaluates to True for all elements
x of xs.

Use the function testAll to define a function noZeros that tests whether all elements of a
given list of integers are different from 0.

[8 marks]

Briefly explain the meaning of the polymorphic data type I0 a.
Write a program
passWd :: I0 O
that performs the following action:
- The user is asked to enter a password (write appropriate message on the standard
output);
- a string (the password) is read from the standard input;
- the user is asked to retype the password;

- if the two passwords are different, then the action terminates with a message that the
password has been rejected,

- otherwise the password is written into the file password.txt and a message is written
that the password is accepted.

[9 marks]

