
CS-M43Algebrai
 Spe
i�
ation of Software and Hardware(Answer 2 questions out of 3)
Question 1(A) Give a brief explanation for the following:(a) Formal Method(b) Spe
i�
ation [4 Marks℄(B) Consider the data type 'sta
k of natural numbers':There is a sort Sta
k. As an initial value, the sta
k
an be empty. A test isEmpty
he
ks if a sta
k
ontains no elements. The operation push
hanges a sta
k by puttinga natural number on it. The operation pop removes the top element of an non-emptysta
k. The operation top returns the top element of an non-empty sta
k without
hanging its
ontents.(a) Write a CASL spe
i�
ation of the signature of this sta
k of natural numbers.You may use the following spe
i�
ation fragment in order to import the spe
i�-
ation of natural numbers from the CASL standard library:spe
 Sta
k =Natthen...A spe
i�
ation fragment of Nat
an be found at the end of this paper.[4 Marks℄(b) Complete your above CASL spe
i�
ation by adding axioms in three di�erentways:(i) use only �rst order logi
.(ii) use �rst order logi
 and the CASL generated
onstru
t.(iii) use �rst order logi
 and the CASL free
onstru
t. [9 Marks℄. . .

(
) De�ne three � algebras A;B;C; where(i) A is the intended model,(ii) B has
onfusion in the
arrier set of Sta
k, and(iii) C in
ludes junk in the
arrier set of Sta
k.The
arrier sets A(Nat) = B(Nat) = C(Nat) = N shall be the natural num-bers. Don't de�ne the interpretations of the signature elements of the CASLspe
i�
ation Nat.State whi
h of your algebras A;B;C is a model of whi
h of your spe
i�
ations.[8 Marks℄

2

Question 2(A) Give experiments that
he
k if a spe
i�
ation is(a) pre
ise(b)
onsistent(
)
omplete [6 Marks℄(B) Spe
ify a multiplexer in CASL.A multiplexer is a hardware element, that merges two in
oming bit streams A and Binto one outgoing bit stream O, where the
hoi
e between the in
oming bitstreams istrigged by a third in
oming bit stream T : whenever T is true, O is set to the
urrentvalue of A; whenever T is false, O is set to the
urrent value of B:You may use the following spe
i�
ation fragment in order to import the spe
i�
ationsof natural numbers and the spe
i�
ation of booleans from the CASL standard library:spe
 Multiplexer =NatthenBooleanthen...Spe
i�
ation fragments of Nat and Boolean
an be found at the end of this paper.[9 Marks℄

. . .3

(C) Spe
ify the Qui
ksort-Algorithm for natural numbers in CASL.A short reminder of Qui
ksort: Qui
ksort is based on the divide-and-
onquerparadigm. Here is the three step divide-and-
onquer pro
ess for sorting a list L:Divide: An element x of the list L is
hosen. Then the list L is partitioned (rear-ranged) into two new lists L1 and L2 su
h that ea
h element of L1 is less thanor equal x, and su
h that ea
h element of L2 is greater than x (i.e. x belongs toL1).Conquer: The two lists L1 and L2 are sorted by re
ursive
alls to qui
ksort.Combine: The result is obtained by appending the sorted version of the list L1 andthe sorted version of the list L2:You may use the following spe
i�
ation fragment in order to import the spe
i�
ationsof lists from the CASL standard library:spe
 Qui
kSort =List[Nat fit sort Elem |-> Nat℄ with sort List[Nat℄ |-> Listthen...Spe
i�
ation fragments of Nat and List
an be found at the end of this paper.[10 Marks℄

4

Question 3(A) Give the de�nitions of(a) a signature �.(b) a �-algebra A. [8 Marks℄(B) Consider the following two UML like pi
torial des
riptions of a message inter
hangebetween two
omponents of a system named 'Terminal' and 'A
quirer'.Pi
ture 1:
The text inbetween << ...>> names a message type, the notation \1...�" says thatthere are one or more instan
es allowed.Pi
ture 2:

Pi
ture 1 des
ribes the system view of what happens if data shall be removed. Pi
ture2 shows the possible behaviour of the
omponent named 'A
quirer', in
luding the
asethat data shall be removed (see the path labeled [remove℄). . . .5

Des
ribe the in
onsisten
y between these two pi
tures.Remark This example stems from an a
tual spe
i�
ation do
ument whi
h is
ur-rently sold as a new international standard. [7 Marks℄(C) Consider the arithmeti
-logi
 unit (ALU) of a pro
essor that
onsists of� two registers R1 and R2;� an a

umulator A; and� a program
ounter PC.For simpli
ity, we assume that all these registers
an deal with natural numbers.The ALU
an perform three instru
tions:(a) add: this operation adds the
ontents of the registers R1 and R2 to the
ontentof the a

umulator A; then it adds 1 to the program
ounter.(b) mult: this operation multiplies the
ontents of the registers R1 and R2 and addsthem to the
ontent of the a

umulator A; then it adds 1 to the program
ounter.(
) jmpZ: this operation sets the program
ounter PC to the value found in registerR1 if the
urrent value of the a

umulator A is zero.The ALU works on a sequen
e of instru
tions spe
i�ed as follows:spe
 Instru
tion =Natthensort Instru
tionops add, mult, jmpZ: Instru
tionsort Instru
tionSequen
eop eval: Instru
tionSequen
e * Nat -> Instru
tionendSpe
ify in CASL(a) the State of the ALU,(b) a next operation that, given a State and an Instru
tion, returns the newstate of the ALU, and(
) an operation alu that, given a State, a
lo
k signal taking values in the naturalnumbers, and an Instru
tionSequen
e, returns the next state of the ALU. Usethe operation next within the axioms. [10 Marks℄6

Useful spe
i�
ations from the CASL standard libraryspe
 Nat =free type Nat ::= 0 | su
(pre:? Nat)preds __ <= __, __ >= __,__ < __, __ > __: Nat * Nat;even, odd: Natops __! : Nat -> Nat;__ + __, __ * __, __ ^ __,min, max, __ -!__ : Nat * Nat -> Nat;__ -?__, __ /? __,__ div __, __ mod __: Nat * Nat ->? Nat;...endspe
 Boolean =free type Boolean ::= True | Falseops Not__ : Boolean -> Boolean;__And__, __Or__ : Boolean * Boolean -> Booleanforall x,y:Boolean. Not(False) = True %(Not_False)%. Not(True) = False %(Not_True)%. False And False = False %(And_def1)%. False And True = False %(And_def2)%. True And False = False %(And_def3)%. True And True = True %(And_def4)%. x Or y = Not(Not(x) And Not(y)) %(Or_def)%endspe
 GenerateList [sort Elem℄ =free type List[Elem℄ ::= [℄ | __ :: __ (first:? Elem; rest:? List[Elem℄)endspe
 List [sort Elem℄ given Nat = GenerateList[sort Elem℄ thenpred isEmpty: List[Elem℄;__eps__: Elem * List[Elem℄ops __ + __ : List[Elem℄ * Elem -> List[Elem℄;first, last: List[Elem℄ ->? Elem;front, rest: List[Elem℄ ->? List[Elem℄;#__: List[Elem℄ -> Nat;__ ++ __ : List[Elem℄ * List[Elem℄ -> List[Elem℄;reverse: List[Elem℄ -> List[Elem℄;__ ! __: List[Elem℄ * Nat ->? Elem;take,drop: Nat * List[Elem℄ ->? List[Elem℄;freq: List[Elem℄ * Elem -> Nat...end 7

