PRIFYSGOL CYMRU; UNIVERSITY OF WALES
DEGREE EXAMINATIONS MAY/JUNE 2003

SWANSEA

Computer Science

CS 213 System Specification

External candidates

Attempt 2 questions out of 3
Time allowed: 2 hours
Students are permitted to use the dictionaries provided by the University

Students are NOT permitted to use calculators

CS_213
SYSTEM SPECIFICATION

(Attempt 2 questions out of 3)
Question 1

Consider the following informal description of a simple microprocessor.

* 64K 16-bit memory;

e Sixteenl6-bit user registers, RO to R15;

* 1-bit condition register C.

Register R15 is used as the program counter. All instructions are 16 bits long, and
consequently will fit in a single memory word. The first four bits of an instruction
represent the opcode, and the remaining twelve bits represent three registers (four bits for
each register). (In the case of the GE instruction, described below, only two of these
registers will be used.)

The operations allowed are specified below in a Pascal-like notation, where R, Ra, Rb, D,
Da, Db and L represent any of the registers RO to R15, and Mem is the memory.

ADD D <- Ra, Rb D :=Ra+Rb; R15:=R15+ 1.
NOR D <- Ra, Rb D :=not(Ra or Rb); R15:=R15 + 1.
BNC Da,Db,L if C=1 then begin
L :=R15+1 ;R15:=Da + Db
end else R15 :=R15 + 1.
GE RaRb ifRa>=Rbthen C:=1else C:=0;R15:=R15 + 1.
LD D <-Ra,Rb D :=Mem|[Ra + Rb] ; R15 :=R15 + 1.

ST R ->Da, Db Mem[Da + Db] :=R ; R15 :=R15 + 1.

(a) Formally define the state of the microprocessor. Your answer should include a clear,
formal, description of the types of each component of the state. [S Marks]

(b) Formally specify the microprocessor. You should include in your specification all the
sub-functions you use. However, it is not necessary to define basic arithmetic and logical
operations, or functions for writing to memory and registers. There is an ambiguity in the
informal specification, which you should point out. [15 Marks]

(c) Extend your formal specification to include a new instruction unpack

UNPS, D1, D2
which assumes register S contains two eight-bit characters. The new instruction should
extract each of these eight-bit characters, and store them in the least-significant eight bits
of registers D1 and D2. The leading, unused, eight bits in each of D1 and D2 should be
padded with zeros. [5 Marks]

Question 2

(a) Explain, with the aid of the inner product step processor (IPS) example from the
course notes, the stream transformer representation of simple hardware systems. Your
answer should include discussion of clocks, streams and stream transformers. Note: you
are being asked to use the IPS as a supporting example — not to simply state the definition
of the IPS. [10 Marks]

(b) Given a retiming A : T — R, state the definitions of the immersion A:R— T, the
start function start : Ret(T, R) — [T — T], and the length function

[:Ret(T,R)— [R = N"]. [5 Marks]
(c) Write down a stream transformer representation of integer counter

count: [T —B]’ — [T —Z U {u}]
The counter takes three Boolean streams stsp, ud, rst as arguments.

The first stream stsp starts and stops the counter: if stsp(f)=ff then
count(stsp,ud,rst)(t)=count(stsp,ud,rst)(t-1), provided the counter is not being reset (i.e.

rst(t)=ff).

The second stream ud determines if it counts up or down: if ud(t)=#t then
count(stsp,ud,rst)(t)=count(stsp,ud,rst)(t-1)+1; and if ud(t)=ff then
count(stsp,ud,rst)(t)=count(stsp,ud,rst)(t-1)-1, again provided the counter is not being
reset.

The third stream rst resets the counter to zero: if rs#(t)=tt, then count(stsp,ud,rst)(t)=0
regardless of the values on streams stzsp and ud.

Before the first true element arrives on rst stream, the counter’s output must be assumed
to be unspecified.

Write a stream transformer specification of the counter. [10 Marks]

Question 3
The following is a (partial) Maude representation of a stack of integers.

fmod STACK is
protecting MachineInt .
sort StackInt .

op Empty : -> StackInt .

op ErrorvVal : -> Machinelnt

op push : StackInt MachineInt -> StackInt .
op top : StackInt -> MachineInt

op pop : StackInt -> StackInt

MachineInt .
StackInt .

var X
var a

eq top(Empty) = ErrorVal .

eq pop(Empty) Empty .
endfm

(a) The set of equations in STACK is not complete. Write down two additional equations,
that define the normal behaviour of top, pop and push. In addition, in STACK no
error is reported when the empty stack is popped. Modify the definition of STACK so an
error is reported if an attempt is made to pop the empty stack. [10 Marks]

(b) Write a set of Z schemas to represent a stack of integers. (When applied to the empty
stack, your pop operation can either return an error or the empty stack: the choice is left
to you.) [10 Marks]

(c) Compare and contrast the Maude and Z representations. What are the key differences
between them? Which do you prefer, and why? [S Marks]

Marking Scheme for CS_213 System Specification 2003 Special Paper

1.(a)
S = Rx M x Bit,

R =[W, = Wql,
M =[W,s — Wil
Bit = {0, 1},

W = Bit"

[1 mark] for each.

(b)Here is a basic version with minimal subfunctions (and instruction field extraction
functions [1 mark] omitted). It is possible to make this more readable with more liberal
use of subfunctions.

COMP:TxS— S,
COMP(0,s) = s
COMP(t +1,s) = next(COMP(t,s))

next:S— S,

next(r,m,c) =

'r[regl(m(r(15)))/ r(reg2(op(m(r(15)))) +

r(reg3(m(r(15))][15/ r(15) + 1], m,c

rlregl(m(r(15)))/ r(reg2(m(r(15))) nor if op(m(r(15))) = NOR
r(reg3(m(r(15))][15/ r(15) + 1], m,c

rlregl(m(r(15)))/ r(15) + 1][15/r (reg2(m(r(15))) + if op(m(r(15))) = BNC and

if op(m(r(15))) = ADD

r(reg3(m(r(15))],m,c c=1

3 j 15))) = BNC and
r15/ r(15) + 11,m,c ZC_(”(’) (r(r(15) an
r[15/r(15) + 1],m,condval (r,m) if op(m(r(15))) = GE

rlregl(m(r(15)))/ m(r(reg2(m(r(15))) +

r(reg3(m(r(15))][15/ r(15) + 1], m,c
r[15/r(15) + 1],m[reg1(m(r(15))) / r(reg 2(m(r(15))) +

(r(reg3(m(r(15)))],c

if op(m(r(15))) = LD

if op(m(r(15))) = ST

condval : Rx M — C,

1 if regl(m(r(15))) = reg2(m(r(15)))
condval(r) = 0 otherwise

[2 marks] for the state function COMP, [10 marks] for the next-state function next, and
any subfunctions used. [2 marks] for observing the ambiguity in behaviour when the
destination register of an operation is R15.

(c) Need to add a new line to the next state function along the lines of
rlregl(m(r(15)))/ bytel(r(reg3(m(r(15))))] if op(m(r(15))) = UNP

[reg2(m(r(15)))/ byte2(r(reg3(m(r (15))1[15/r(15) +1],m,c

2.(a) Bookwork exposition on an example discussed in the course. For clocks [2 marks];
streams [3 marks]; stream transformers [2 marks]; for correct defn. of ISP [3 marks]

(l)) [1 mark] for immersion; [2 marks each] for start and length
A(r) = (uD)[A1) = 1]

start(A)(f) = AA(t)

IA)r) = AMr +1) = A(r)

(c) There are a number of possible solutions. One is

u if (Vt'st)[rst(t)= ff]

0 if rst(t) =tt

count(stsp,ud,rst)(t — 1) if rsi(t) = ff and stsp(t) = tt
count(stsp,ud,rst)(t) = J if rst(t) = ff and stsp(t) = ff

t(stspud,rst)(t — 1) +1
count(stsp,ud ,rst)(t — 1) and ud(t) = it

if rst(t) = ff and sts p(t) = ff
and ud(t) = ff

They might choose to build a one cycle delay into the representation, which is acceptable.
[2 marks] for each case.

count(stsp,ud,rst)(t —1)—1

3.(a)Most likely are [3 marks each]

eq top(push(a,x))= x .

eq pop(push(a,x))= a .

Easiest way to modify representation is to introduce a new constant called (say)
ErrorStack [2 marks], and alter the defn. of pop(empty) to pop(empty)=ErrorStack [2
marks].

(b) Based on example discussed in lectures. [4 marks] for preliminary
definitions/schemas, [2 marks] each for schemas for push, pop, top.

(c) Variety of possibilities here — most important probably executable nature of
Maude/algebraic specs [3 marks] — hence hard to give a complete marking scheme.

