
CS M32 (2004-05)
ALGORITHM DESIGN AND ANALYSIS

(Attempt 2 questions out of 3)

Question 1

(a) State the (Simplified) Master Theorem, and use it to give asymptotically tight bounds for
each of the following recurrences.

(i) T(n) = 4T(bn/3c) + 2n.

(ii) T(n) = T(bn/3c) + 2.

(iii) T(n) = 9T(dn/3e) + 4n2. [9 marks]

(b) You are in the dungeon of the castle of the evil CS M32 Lecturer, and you find a pot con-
taining n coins (n≥3). You know from CS M32 legend that only one of these coins is an
authentic (and priceless) gold coin, while the remaining (n−1) coins are made from a cheap
gold-coloured alloy. The only way to distinguish the authentic coin from the others is by its
weight: CS M32 legend has it that—while the authentic coin appears to be identical to the
counterfeit coins—it actually has a slightly different weight than the counterfeit coins, all of
which are themselves identical in weight. (The legend does not stipulate whether the real
coin is heavier or lighter than the counterfeit coins.)

You have come to steal the real coin from the evil CS M32 Lecturer, but you want to leave
all of the other coins behind so that the evil CS M32 Lecturer does not realize that the real
coin is gone. (Otherwise, in her fury the Lecturer would fail all of the students, including
yourself; and in their fury your fellow students would inform on you.)

To discover the real coin, you have brought with you a balance scale
(like the one pictured) with which you can compare the weights of
two sets of coins: you can place piles of coins on the arms of this
scale to see if one pile of coins is heavier than the other. You also
have a clever idea involving divide-and-conquer which you learned
from the CS M32 Lecturer. (The Lecturer’s not all bad after all!) You
need to find the real coin and get out before being discovered.

'

&

$

%
(i) Describe a recursive Divide-and-Conquer algorithm for finding the real coin. Justify

that your algorithm is correct. (Hint: Start by dividing the coins into three piles.)
[6 marks]

(ii) Write down a recurrence relation for T(n) which represents the maximum number of
weighings your algorithm needs to make in order to find the real coin.

[3 marks]

(iii) Give an asymptotically tight bound for T(n).
[2 marks]

(c) Explain the information theoretic lower bound of Ω(lg n) for the problem in part (b).
[5 marks]

1

Question 2

One day, instead of going to your CS M32 lecture, you break into your Lecturer’s house. There
are n items which you can steal, but you cannot carry them all. Of course you want to maximize
the value of the items that you do steal.

More specifically, the n items weigh w1, w2, . . . , wn and have values v1, v2, . . . , vn. You can
only carry a total weight of W. Hence you want to find a set I ⊆ {1, 2, . . . , n} which maximizes
M =

∑
i∈I

vi under the constraint that
∑

i∈I
wi ≤ W.

For example, you might only be able to carry
W=17kg, and there may be n=3 items to be stolen
(as shown in the table). In this case, the optimal solu-
tion is I = {2, 3}, giving a maximal value of M = 18.

Item value weight

1. TV v1=12 w1=10

2. Stereo v2=10 w2=9

3. VCR v3=8 w3=8

(a) Since you are missing the lecture on Dynamic Programming, you may think it best to use
one of the following greedy strategies. Starting with I = ∅,

(i) repeatedly try adding to I the items in order of decreasing value.
(ii) repeatedly try adding to I the items in order of increasing weight.

(iii) repeatedly try adding to I the items in order of decreasing (vi

wi
).

Demonstrate that none of these strategies is guaranteed to give an optimal solution.
(Hint: Two of these strategies will fail on the above example.)

[8 marks]

(b) Having realized that no greedy algorithm will work, you recall the Lecturer saying something
about Dynamic Programming. Fortunately you have your Algorithms textbook with you (you
don’t go anywhere without it), and you quickly read the chapter on Dynamic Programming.
“Aha!”, you say to yourself.

You decide that you need to devise a Dynamic Programming algorithm based on a recursive
equation for the maximum value m[i, w] of a set of items taken from {1, 2, . . . , i} with total
weight bounded by w (with 1 ≤ i ≤ n and 0 ≤ w ≤ W).

(i) Give such a recursive definition for m[i, w], and explain it carefully.
(Hint: First, what is m[0, w]? Second, what is m[i, w] if wi > w?)

[8 marks]

(ii) Give pseudocode for the Dynamic Programming algorithm which computes the values
of m[i, w].

[5 marks]

(c) Of course, you only have so much time before the police arrive in response to the silent
burglar alarm. Also, you don’t have much paper to write on.

Analyze the running time and space requirement of your algorithm.
[4 marks]

(Postscript: In your haste, you left your textbook on the kitchen table, open
at the chapter on Dynamic Programming, so you were arrested.

Moral: Don’t leave your studying to the last minute!)

2

Question 3

In the Majority Problem, we are given an array A[1..n] of n integers, and we must find the element
which appears more than n/2 times in the array, or report that no such majority element exists.
For example,

• the array [3, 5, 5, 2, 5] contains the majority element 5;

• the array [3, 5, 5, 2, 5, 4] does not contain a majority element.

(a) Describe a O(n lg n) time algorithm for solving the Majority Problem which starts by sorting
the array with, e.g., mergesort. (You do not need to describe mergesort; and you needn’t give
your solution in pseudocode; a short explanation will suffice.)

[4 marks]

(b) Describe a linear-time algorithm which makes use of the linear-time algorithm we devised
for selecting the kth smallest from an array of n elements. (Again, a short explanation will
suffice.) (Hint: Think median, ie, the dn/2eth smallest.)

[4 marks]

(c) The algorithm to the right determines, with
some error probability p, whether or not an
array A[1..n] contains a majority element.

Explain when this algorithm gives a guaran-
teed correct result; and give a bound on the
error probability p of this algorithm in the
instances in which the result is not guaran-
teed to be correct. Explain your reasoning.

'

&

$

%

RANDOM-MAJORITY(A[1..n])

1 x← A[random(1..n)]

2 k← 0

3 for i← 1 to n do

4 if A[i] = x then k← k+1

5 if k > n/2 then return x

6 else return “no majority exists”

[4 marks]

(d) Here, we derive another linear-time algorithm which only relies on comparing elements for
equality: we can test if two elements are equal, but not if one is less than another. Thus it
can be used on arrays containing arbitrary incomparable elements, not just integers.

(i) Prove that if A[i]6=A[j] then removing A[i] and A[j] from the array preserves the ma-
jority element, if it exists. That is, if x is a majority element of the original array, then
x must still be a majority element of the shorter array with the two unequal elements
removed.

[4 marks]

(ii) Prove, using a suitable counter-example, that the converse of the above fact is false in
general. That is, give an array which has no majority element but the removal of two
unequal members produces a shorter array which does have a majority element.

[4 marks]

(iii) Using the above observations, design an algorithm for the majority problem which
runs in linear time. Present your algorithm in pseudocode, and justify its correctness
and running time.

[5 marks]

3

