
CS 213 System Specification

(Attempt 2 questions out of 3)

Question 1.

(a.) i) Write a module QUEUE which specifies queues containing elements of a sort
Elt. The constructors are:

<> : -> Queue, representing the empty queue,
<_> : Elt -> Queue, representing a queue with one element,
_#_ : Queue Queue -> Queue, concatenating two queues.

Your module should further contain an operator isEmpty, which tests
whether or not a queue is empty, and operators first and last, which
return the first element, and last element respectively.

ii) Extend your module by an operator reverse which computes the reverse
of a queue.

[9 marks]

(b.) The following is a Maude module specifying binary trees.

fmod BIN-TREE is

sorts BinTree Elt .

op null : -> BinTree [ctor] .

op [_<-_->_] : BinTree Elt BinTree -> BinTree [ctor] .

ops rightTree leftTree : BinTree -> BinTree .

op getData : BinTree -> Elt .

op isLeaf : BinTree -> Bool .

vars L R : BinTree .

var D : Elt .

eq rightTree([L <- D -> R]) = R .

eq leftTree([L <- D -> R]) = L .

eq getData([L <- D -> R]) = D .

ceq isLeaf([L <- D -> R]) = true if (L == null) and (R == null) .

endfm

i) Extend the module BIN-TREE by an operator specifying the height of a
tree.



ii) Introduce a sub-sort BalTree consisting of trees where, in each node, the
difference between the height of the left subtree and the height of the right
subtree is at most 1.

[8 marks]

(c.) i) Explain what is meant by the term formal methods.

ii) What does it mean for an implementation of a specification to be correct?
Give an explanation using the correctness model given in the lecture.

[8 marks]

Question 2.

(a.) i) Specify a stream transformer that takes two boolean streams as input and
returns a stream which, at each time T, is true if at least one of the input
streams is true.

ii) Consider the following Maude specification:

fmod ST is protecting INT .

sort BoolStr IntStr .

var B : BoolStr .

var I : IntStr .

var T : Int .

op _(_) : BoolStr Int -> Bool [prec 1] .

op _(_) : IntStr Int -> Int [prec 1] .

op st : BoolStr IntStr -> IntStr .

eq st(B,I)(0) = 0 .

ceq st(B,I)(T) = I(T - 1) + st(B,I)(T - 1)

if B(T - 1) == true .

eq st(B,I)(T) = st(B,I)(T - 1) [owise] .

endfm

Briefly explain what ST is doing.

iii) Write a module ST-RUN that executes the stream transformer with some
sample input of your own choice. State the output value of the stream
transformer at time 2 when using your sample input data.

[10 marks]



b.) A microprocessor specification is typically built on a module defining the binary
numbers such as the following.

fmod BINARY is

protecting INT .

sorts Bit Bits .

subsort Bit < Bits .

ops 0 1 : -> Bit .

op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)] .

vars S T : Bits .

vars B C : Bit .

endfm

i) Extend the module BINARY by an operator isZero testing whether or not
a given binary number is zero (i.e., is of form 0 0...0).
(You may use further operators introduced in the course, however you
should briefly explain what they are doing.)

ii) Extend the module BINARY by an operator _<<_ : Bits Bits -> Bits

which shifts the bits in its first argument by a required number of positions,
given by the second argument, to the left, and fills with ‘0’s from the right.
(Example: red 1 1 1 0 1 << 1 0 yields 1 0 1 0 0).

[7 marks]

(c.) i) Explain the difference between local and global confluence in a term rewrit-
ing system.

ii) Let A,B,C,D be constants and consider the reduction system given by the
following set of rules:

A = B

B = A

A = C

B = D

Is this reduction system locally/globally confluent? Justify your answers.

iii) Newman’s Lemma says that, in a reduction system, termination and local
confluence implies global confluence. Is the example above (Question 2, c,
ii) contradicting Newman’s Lemma?

[8 marks]



Question 3.

Consider the following informal description of a simple register based microprocessor.

• a memory consisting of 16-bit words, memory addresses are 16-bits long,

• 16 16-bit registers,

• a 16-bit program counter

Instructions are 16 bits long: the first four bits are the opcode, the remaining bits
are used for three register addresses. There are four instructions:

• Add Ra, Rb, Rc: Add register Ra to register Rb and write the result to register
Rc. Increment the program counter by 1. The opcode for this instruction is 0

0 0 0.

• SLL Ra, Rb, Rc: Shift Ra by Rb positions to the left and write the result to
Rc. Increment the program counter by 1. The opcode is 0 0 0 1.

• ST Ra, Rb: Store Ra in memory location Rb. Increment the program counter
by 1. The opcode is 0 0 1 0.

• JMP Ra, Rb, Rc: If Ra == 0 then store the current program counter, in-
cremented by 1, in Rb and set the program counter PC to PC + Rc; otherwise
increment the program counter by 1. The opcode is 0 0 1 1.

You may assume the following are available: the module BINARY (+ and << as oper-
ators), the sorts Word (16 bits) and Opfield (4 bits) with operators opcode, rega,

regb, regc : Word -> Opfield, returning the according parts of an instruction,
and appropriate constants, denoting 0 and 1, of sort Word. Minor syntactic errors
will not be penalised.

(a.) Formally specify the memory of the microprocessor.
What is the size of the memory? [5 marks]

(b.) Write a module STATE that specifies the state of the microprocessor. Your
module should contain appropriate tupling and projection operators.

[4 marks]

(c.) Write a Maude module defining the behaviour of the microprocessor as an
iterated map. Your module should contain the iterated map state function,
as well as the next-state function.

[12 marks]

(d.) Write a module that executes your specification. Your sample run should first
execute an addition, then jump to a subroutine, and finally write the result of
the addition to the memory. [4 marks]


