CS_213 System Specification

(Attempt 2 questions out of 3)

Question 1.

(a.) The following is a simple Maude module.

fmod BASIC-NAT is
sort Nat .

op O : -> Nat .
op s : Nat -> Nat [iter]
op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq 0O+ N=N.
eq s(M) + N =sM + N)
endfm

i) Extend the module by an operator _*_ defining multiplication on Nat.

ii) Explain how the following expression would be re-written in Maude, using your

definition of multiplication.

s72(0) * s(0)

(b.) The following is a (partial) Maude representation of a stack.

fmod STACK is
sorts Stack Elt .

op EmptyStack : -> Stack .

op ErrorElt : -> EI1t .

op push : Stack Elt -> Stack .
op top : Stack —> Elt .

op pop : Stack —> Stack .

var S : Stack .

var E : Elt .

eq top(EmptyStack)

eq pop (EmptyStack)
endfm

ErrorElt .
EmptyStack .

[6 marks]

i) The module STACK is not complete. Write down the missing equations that
define the behavior of top, pop and push.

ii) The specification of STACK used an extra operator ErrorElt in order to describe
the behavior of the operator top. This can be avoided by introducing a sub sort
NeStack of non-empty stacks. Write a new module BETTER-STACK specifying a
stack that is built on the sorts Stack, Elt and NeStack.

[6 marks]

(c.) i) Explain informally what it means for a term rewriting system to be terminating
and confluent.

ii) The properties ‘termination’, ‘local confluence” and ‘global confluence’ apply to
abstract reduction systems as well. Here is an example of such an abstract
reduction system on the set N U {true, false}.

n — n+l (Each number reduces to its successor.)
2n — true (Each even number reduces to true.)
2n+1 — false (Each odd number reduces to false.)

Decide (and briefly explain) whether or not this reduction system is terminating,

locally confluent, globally confluent?
[8 marks]

(d.) How would you specify a 64K memory consisting of bytes in Maude? You may assume
the presence of the module BINARY as well as sorts Byte and Word (16 bits). Your
specification should contain appropriate read and write operations.

Either give an informal explanation or write down a Maude module.

[5 marks]

Question 2.

(a.) The following is a (partial) module specifying the binary numbers.

1. fmod BINARY is

2. protecting INT .

3. sorts Bit Bits .

4 subsort Bit < Bits .

5. ops 0 1 : -> Bit

6. op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)]
7. op |_| : Bits -> Int .

8. vars S T : Bits .

9. vars B C : Bit

10. eq | B | =1 .

11. eq | SB Il =181 +1

12. endfm

i) Briefly, explain what each numbered line means.

ii) Extend the module by an operator Bits2Int that transforms a binary number
into an integer. (You may assume the usual arithmetical operations on Int and
you may also extend the module BINARY by further operations if needed.)

[10 marks]

(b.) Consider the following short Maude module:

fmod BOOLSTREAM is
protecting INT .
sort BoolStr .
var T : Int

op _(_) : BoolStr Int -> Bool .
endfm

Briefly explain what is intended by the operator _(_). Use it to define a stream that
is constant true. [2 marks]

(c.) The following is an informal description of a stream transformer that has as inputs a
data stream of integers and a control stream (i.e., a stream of booleans). The output
is a stream of integers.

At time T the output of the stream transformer is the total number of 0-elements
that have arrived on the data stream of integers, up to and including time T, such
that when each 0 arrived the boolean control stream was true.

For example:

time 0 1 2 3 4)

integer stream 1 0 3 0 4 0
control stream | true true false false true true

At time 5, the outputstream of the stream transformer has value 2. The 0 at time 3
is not counted because the boolean stream was false.

Write a Maude module formally defining the behavior of the stream transformer.
[8 marks]

(d.) Formal methods usually involve a specification and an implementation. We use a
data abstraction map that maps the implementation state to a specification state
and a time abstraction map (called a retiming) that maps the implementation clock
time to the specification clock time. Which properties must be fulfiled by these maps
(with respect to the correctness of the implementation)?

[5 marks]

Question 3.

Consider a simple microprocessor with a memory of 8K 16-bit words (i.e. memory addresses
are 13 bits long), an accumulator (16 bits) and a program counter (13 bits). The memory
is shared by programs and data. Instructions are 16 bits long: the first three bits are the
opcode and the remaining bits serve as an address. There are four instructions:

Add L: Add the accumulator to memory location L and write the result to the
accumulator. Increment the program counter. The opcode is 0 0 0.

Store L: Write the accumulator to memory location L. Set the accumulator to the
word 0. Increment the program counter. The opcode is 0 0 1.

Eq L: If the accumulator is equal to memory location L, then write the word 0 to the
accumulator; otherwise set the accumulator to the word -1. Increment the program
counter. The opcode is 0 1 0.

Jump L: If the accumulator is the 0-Word, then set the program counter to the least
significant 13 bits of memory location L, otherwise increment the program counter.
The opcode is 0 1 1.

You may assume the following are available:

The module BINARY, containing sorts Bits and Bit as well as the usual range of
logical and arithmetic operations.

A module MEM representing the memory, including read and write operations.

Sorts Word(16 bits), Address(13 bits), Opfield (3 bits), defined in terms of Bits and
Bit, as well as the operation _+_ for the sorts Word and Address.

The built-in module INT.

Write a module INSTRUCTION-FORMAT that defines the precise instruction format
(i.e., determines opcode and address of a given instruction) and a second module
STATE defining the state of the microprocessor. Your module STATE should contain
appropriate tupling and projection operators. [7 marks]

Write a Maude module defining the behavior of the microprocessor as an iterated
map. Your module should contain the iterated map state function, as well as the
next-state function.

Explain briefly what the iterated map state function does. [12 marks]

Write a sample program that adds two numbers stored in the memory (for instance,
in the 10th and 11th address field) and writes the result back to the memory (e.g.,
to the 12th address field). [3 marks]

How would you modify the jump instruction (in your specification) in order to be
able to conveniently jump to a subroutine (and return from it)? Use it in a sample
program. [3 marks]

