
CS 221 Functional Programming I

(Attempt 2 questions out of 3)

Preliminary remark: By a function we mean a Haskell function, and by the definition of a function

we mean the defining equations of that function preceded preceded by its signature.

Question 1.

(a) What are the values of the following expressions?

(i) map even [1..5]

(ii) filter even [1..5]

(iii) [x^2 | x <- [1..5], even x]

(iv) (\f -> \x -> (f (f x))) (^2) 3

[8 marks]

(b) Define a function that computes, for a positive integer n, the list of its divisors, that is the list
of all positive integers d such that d divides n. For any unsuitable input an error shall be raised.

[9 marks]

(c) Consider the following functions

zero :: (Int,Int) -> Int

zero (x,y) = 0

zero1 :: (Int,Int) -> Int

zero1 p = 0

Explain why the functions zero and zero1 are not equivalent.

How is this fact connected with Haskell’s evaluation strategy?

Would the results be different if a different evaluation strategy were used?

Hint: Consider the reductions for the expressions zero silly and zero1 silly where

silly :: (Int,Int)

silly = silly

[8 marks]



Question 2.

(a) Suppose that a polymorphic abstract data type of finite sets is to be implemented by repetition-
free lists:

type Set a = [a]

(i) Define, as part of this implementation, a function subset that tests inclusion of sets. The
function subset should be defined for every type a for which an equality test, ==, is defined,
that is, the type a must be member of the type class Eq. Therefore the signature of subset
is

subset :: Eq a => Set a -> Set a -> Bool

(ii) Suppose we restrict the type parameter a to types for which an ordering, <, is defined, that
is, we require the type a to be a member of the type class Ord.

Give a more efficient implementation of the function subset for sets represented by repetition-
free ordered lists.

(iii) Estimate the run time complexities of the functions you defined in part 2 (a) (i) and 2 (a) (ii)
in terms of the number of elements of sets assuming that an equality test and a comparison
between two elements each cost one time unit.

[10 marks]

(b) Write a program findCode :: IO () that finds, for every character c, input by the user as a
string of length 1, its number, that is, the value of fromEnum c :: Int. The program shall ter-
minate when the user inputs the empty string, that is, presses Return without entering anything.

Hints: In order to get the user’s input use getLine :: IO String, for printing the result use
the functions show :: Show a => a -> String and putStrLn :: String -> IO ().

[7 marks]

(c) Consider the following definitions:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

comp :: (b -> c) -> (a -> b) -> (a -> c)

comp f g x = f (g x)

Prove

map f (map g xs) = map (comp f g) xs

by induction on lists.

[8 marks]



Question 3.

(a) Suppose a point in the 2-dimensional plane is represented by a pair of floating point numbers,
and a polygon is represented by a list of points:

type Pt = (Float,Float)

type Polygon = [Pt]

(i) Define a function that rotates a polygon by an angle θ around the origin where the angle is
given in radians (represented by floating point numbers).

(ii) Define a function that scales a polygon p by a given factor z :: Float, that is, every
coordinate of a point in p is multiplied by z.

[8 marks]

(b) (i) Define a polymorphic data type Tree a of binary trees with leaves labeled by elements of
some unspecified type a.

(ii) Define a polymorphic higher-order function mapTree that takes as arguments a function
f :: a -> b and a tree t :: Tree a and computes the tree which is built like t, but
where each label x is replaced by f x.

[9 marks]

(c) Assume we represent a real polynomial by its list of coefficients:

type Polynomial = [Float]

Hence a list [c0, c1, c2 . . . , c
n
] represents the polynomial

c0 + c1 ∗ X1 + c2 ∗ X2 + . . . + c
n
∗ Xn.

Define an evaluation function for polynomials, evalPol :: Polynomial -> Float -> Float,
that computes, for every polynomial [c0, c1, c2 . . . , c

n
] and floating point number x, the number

c0 + c1 ∗ x1 + c2 ∗ x2 + . . . + c
n
∗ xn

Hints: You may use the predefined Haskell function zipWith which has the property that

zipWith g [c0, . . . , cn
] [x0, . . . , xn

] = [g c0 b0, . . . , g c
n

b
n
]

Alternatively you may use the observation that

c0 + c1 ∗ x1 + c2 ∗ x2 + . . . + c
n
∗ xn = c0 + x ∗ (c1 + c2 ∗ x1 + . . . + c

n
∗ xn−1)

to give a simple recursive definition of the function evalPol (Horner’s rule).

[8 marks]


