CS-228
OPERATING SYSTEMS
Attempt 2 questions out of 3

Question 1

(a)

With the aid of a state transition diagram, illustrate the transitions between the process states
running, ready, blocked, suspended-ready, and suspended-blocked. The events causing
the transitions should be clearly indicated.

Consider each of the following suggested transitions. If it is included in your state transition
diagram, give an example event that would cause such a transition; otherwise, explain why
such a transition is not possible.

from “blocked” to “suspended blocked”;

)
)
(iii) from “blocked” to “running”;
) from “suspended-ready” to “blocked”;
)

from “suspended-blocked” to “suspended-ready”.

[10 marks]

Consider the set of processes shown in the table below. We assume that the CPU ready queue
is empty at time 0, and that the time needed for context switches is negligible.

P | P | PP
Arrival time (ms) | O | 1 | 4 | 7
Burst time (ms) | 3 | 5 | 6 | 4

With the aid of a Gantt chart or an equivalent, determine the average waiting time (over all
four processes) for the following scheduling algorithms:

(i) First-in-first-out.

(ii) Preemptive round robin, with quantum set to 2ms. Newly arrived processes go onto the
back of the queue ahead of any processes pre-empted at the same time.

(iii) A simplified multi-level feedback queue scheduling algorithm with only two levels. The
quantum for processes in the first level is set to 2ms, and that for the second level is 4ms.

[7 marks]

Explain the purpose and functionality of interrupts in the context of I/O processing. You
should discuss such concepts as the interrupt controller, interrupt vectors, interrupt handlers,
interrupt classes, and any other mechanisms found in the Operating System and hardware
which you feel are relevant.

[8 marks]

Question 2

(a) In the context of Dijkstra’s deadlock avoidance algorithm (banker’s algorithm) for single-type
resource management, state whether each of the following states is safe or unsafe, briefly justi-
fying your answer in each case.

We assume that there are 10 resources in total and only 2 are free at the moment. In the tables,
for each process, loan is the number of resources currently held by it, maz is the maximum
number of resources needed, and claim is the number of resources to be claimed.

STATE I |loan max claim STATE II | loan max claim

P 2 10 8 P 2 6 1
b, 2 5 3 P, 1 7 3
P 2 1 2 P, 2 7 5
P, 2 7 5 P, 0 4 1

STATE III | loan mazx claim STATE IV | loan max claim

P 2 9 7 P 3 7 4
P 2 4 2 Py 2 8 6
Ps 1 3 2 Py 3) 2
Py 3 9 6 Py 0 4 4
[4 marks]
(b) In the context of memory management, what is meant by the following?
(i) Fragmentation;
(ii) monoprogramming;
(iii) anticipatory paging;
(iv) relocatable loading.
[8 marks]

(¢) (i) A file containing 2700KB of data is to be stored in a Unix file system with 1KB data
blocks. Each indirect block can hold 256 disk addresses (i.e. 32-bits per address). What
is the total number of data blocks required to store this file (including all indirect blocks
but not the inode itself)? Explain your answer in detail.

(ii) Describe, with the aid of a diagram if necessary, the concepts of Networked File System
(NFS, designed by Sun Microsystems).

[7 marks]

(Question 2 continued on next page.)

(d) (i) Describe in detail how events may be ordered in a distributed environment without the
benefit of a common clock.

(ii) Consider three processes running concurrently on different computers, each with its own
clock. During the execution, these processes exchange messages frequently, and generate
reports regularly (e.g. every hour) which must be displayed on the screen at a similar time.
However, as shown below, the speeds (in seconds) of the three clocks are quite inconsistent
with each other. Using this example, explain how the ‘time stamping’ concept can be used
to co-ordinate the activities of these three processes.

Cl C2 3

[6 marks]

Question 3

(a) With demand paging memory management and the least recently used (LRU) page re-
placement strategy, the current LRU matrix (6x6) is shown below, assuming that the mem-
ory has only six page frames. If the next three page reference numbers are 6, 2, and 1 respec-
tively, illustrate the changes to the LRU matrix step by step.

4 3 579 2

N O© N O1T Wb
O 0000 0o
ellelieolieoliell
R OOIO|IFF
R RO RFF
RIOIOIFRIFIPF
O|IO0|IO|IO|F|F

Does the LRU page replacement strategy suffer from Belady’s anomaly? Explain Belady’s
anomaly and your answer.

[7 marks]

(b) (i) Describe how a virus infects an executable program, and how an anti-virus program detects
known viruses.

(ii) Describe the mechanisms used by encrypted & polymorphic viruses in order to defeat the
detection methods commonly used by anti-virus programs.

[6 marks]

(c¢) Explain why the multi-level feedback queues scheduling algorithm used in CTSS & MULTICS
is said to favour short jobs and I/O bound jobs.

[4 marks]

(Question 3 continued on next page.)

(d) Consider the bounded buffer producer/consumer problem: there is a buffer shared among a
number of processes, some of which (producers) only add items to the buffer and the others
(consumers) only take items out of the buffer. The pseudocode describing this problem is given
below:

1 program Producer/Consumer;

2 const producer_count=10;

3 const consumer_count=10;

4 const buffer_size=100; { maximum no. of items buffer can hold }
5 shared var num_items: integer; { items currently in buffer - shared }
6 var i: integer;

7 concurrent_procedure Producer();

8 begin

9 repeat

10 ProduceAnItem() ; { takes a random time to complete }
11 while num_items > buffer_size do nothing; { waiting }
12 AddTheItemToBuffer();

13 num_items := num_items + 1;

14 forever

15 end;

16 concurrent_procedure Consumer() ;

17 begin

18 repeat

19 while num_items <= O do nothing; { waiting }
20 RemoveAnItemFromBuffer();

21 num_items := num_items - 1;

22 ConsumeThelItem() ; { takes a random time to complete }
23 forever

24 end;

25 begin { main program }
26 num_items := 0;

27 concurrent_begin

28 for 1 := 1 to producer_count do

29 Producer(); { starts in a new process/thread }
30 for 1 := 1 to consumer_count do

31 Consumer () ; { starts in a new process/thread }
32 concurrent_end;

33 end.

(i) Indicate all critical sections in the above program by giving line numbers.
(ii) Provide the program with mutual exclusion by inserting necessary semaphore operations.

(iii) Assume that producer and consumer processes cannot share any global variables (such as
num_items) except semaphores. Using pseudocode, outline a solution to the problem with
appropriate semaphore operations.

[8 marks]

