CS-M43

Algebraic Specification of Software and Hardware

(Answer 2 questions out of 3)

Question 1

(A) Give a brief explanation for the following:

(a)
(b)

Formal Method

Specification

[4 Marks]

(B) Consider the data type ’'stack of natural numbers’:

There is a sort Stack. As an initial value, the stack can be empty. A test isEmpty
checks if a stack contains no elements. The operation push changes a stack by putting
a natural number on it. The operation pop removes the top element of an non-empty
stack. The operation top returns the top element of an non-empty stack without
changing its contents.

(a)

Write a CASL specification of the signature of this stack of natural numbers.
You may use the following specification fragment in order to import the specifi-
cation of natural numbers from the CASL standard library:

spec Stack =
Nat
then

A specification fragment of Nat can be found at the end of this paper.

[4 Marks]
Complete your above CASL specification by adding axioms in three different
ways:
(i) use only first order logic.

(ii) use first order logic and the CASL generated construct.
(iii) use first order logic and the CASL free construct.

[9 Marks]

(c) Define three 3 algebras A, B, C, where
(i) A is the intended model,
(ii) B has confusion in the carrier set of Stack, and

(iii) C includes junk in the carrier set of Stack.

The carrier sets A(Nat) = B(Nat) = C(Nat) = N shall be the natural num-

bers. Don’t define the interpretations of the signature elements of the CASL
specification Nat.

State which of your algebras A, B, C' is a model of which of your specifications.

[8 Marks]

Question 2
(A) Give experiments that check if a specification is

(a) precise
(b) consistent

(c) complete
[6 Marks]

(B) Specify a multiplexer in CASL.

A multiplexer is a hardware element, that merges two incoming bit streams A and B
into one outgoing bit stream O, where the choice between the incoming bitstreams is
trigged by a third incoming bit stream T: whenever T is true, O is set to the current
value of A, whenever T is false, O is set to the current value of B.

You may use the following specification fragment in order to import the specifications
of natural numbers and the specification of booleans from the CASL standard library:

spec Multiplexer =
Nat

then
Boolean

then

Specification fragments of Nat and Boolean can be found at the end of this paper.

[9 Marks]

(C) Specify the Quicksort-Algorithm for natural numbers in CASL.

A short reminder of Quicksort: Quicksort is based on the divide-and-conquer
paradigm. Here is the three step divide-and-conquer process for sorting a list L:

Divide: An element z of the list L is chosen. Then the list L is partitioned (rear-
ranged) into two new lists Ly and Ly such that each element of L; is less than
or equal z, and such that each element of Lo is greater than x (i.e. belongs to
Ly).

Conquer: The two lists L and Ly are sorted by recursive calls to quicksort.

Combine: The result is obtained by appending the sorted version of the list L; and
the sorted version of the list Ls.

You may use the following specification fragment in order to import the specifications
of lists from the CASL standard library:

spec QuickSort =
List[Nat fit sort Elem |-> Nat] with sort List[Nat] |-> List
then

Specification fragments of Nat and List can be found at the end of this paper.

[10 Marks]

Question 3

(A) Give the definitions of

(a) a signature X.
(b) a X-algebra A.

[8 Marks]

(B) Consider the following two UML like pictorial descriptions of a message interchange
between two components of a system named 'Terminal’ and ’Acquirer’.

uirer
terminal server

«Session Start»

Picture 1:

«Remove Config Data Notification» 1...*

A

«Remove Config Data Acknowledge» 1...*

Y

«Session End»

A

* 93

The text inbetween << ...>> names a message type, the notation “1...*” says that

there are one or more instances allowed.

Picture 2:

Receive «Session Start»
Message

Check for Additional
Configuration Data

[no actions]

[activate]

[read]

Send «Config Data Re-
quest» Message

end «Config Data Noti-\
fication» Message

[remove]

[download]
Send «Activate Config

Data Notification»
Message
Send «Remove Config
Data Notification»
Message
eceive «Activate Con-
fig Data Acknowledgen
Message

eceive «Remove Con>
fig Data Acknowledge»
Message

Receive «Config Data
Response» Message

Receive «Config Data
Acknowledge» Message

Send «Session End»
Message

Picture 1 describes the system view of what happens if data shall be removed. Picture
2 shows the possible behaviour of the component named ’Acquirer’, including the case
that data shall be removed (see the path labeled [removel).

Describe the inconsistency between these two pictures.

Remark This example stems from an actual specification document which is cur-
rently sold as a new international standard.

[7 Marks]

Consider the arithmetic-logic unit (ALU) of a processor that consists of

e two registers Ry and R,
e an accumulator A, and

e a program counter PC.

For simplicity, we assume that all these registers can deal with natural numbers.

The ALU can perform three instructions:

(a) add: this operation adds the contents of the registers Ry and Ry to the content
of the accumulator A; then it adds 1 to the program counter.

(b) mult: this operation multiplies the contents of the registers R; and Ry and adds
them to the content of the accumulator A; then it adds 1 to the program counter.

(c) jmpZ: this operation sets the program counter PC' to the value found in register
R1 if the current value of the accumulator A is zero.

The ALU works on a sequence of instructions specified as follows:

spec Instruction =
Nat
then
sort Instruction
ops add, mult, jmpZ: Instruction

sort InstructionSequence
op eval: InstructionSequence * Nat -> Instruction
end

Specify in CASL
(a) the State of the ALU,

b) a next operation that, given a State and an Instruction, returns the new
p) g)
state of the ALU, and

(c) an operation alu that, given a State, a clock signal taking values in the natural
numbers, and an InstructionSequence, returns the next state of the ALU. Use
the operation next within the axioms.

[10 Marks]

Useful specifications from the CASL standard library

spec Nat =
free type Nat ::= 0
preds __ <= __, _
- < _., _
even, odd:
ops __! : Nat ->
+ *

end

— [mp—] ——
min, max, __
7, __/

div

— —) —

spec Boolean =
free type Boolean :
ops Not__ :

And

R —_—y ——

forall x,y:Boolean
. Not(False) = True
. Not(True) = False
. False And False =
. False And True =
. True And False =
. True And True =
. x Or y = Not (Not(

end

Or__

| suc(pre:? Nat)
- >= __,
- > __: Nat * Nat;
Nat

Nat;
-__ Nat * Nat -> Nat;
? s

mod : Nat * Nat ->7 Nat;

:= True | False
Boolean -> Boolean;
: Boolean * Boolean -> Boolean

% (Not_False)¥
% (Not_True)Y

False %(And_def1)
False %(And_def2)%
False %(And_def3)%
True %(And_def4)%

x) And Not(y)) %(0r_def)%

spec GenerateList [sort Elem] =

free type List[Elem] ::= [] |

end

:: __ (first:? Elem; rest

spec List [sort Elem] given Nat = GeneratelList[sort Elem] then

end

pred isEmpty: L
__eps__: E
ops -— t __
first, las
front, res
#__: List[

++

reverse:
|

take,drop:
freq: List

ist[Elem];
lem * List[Elem]

: List[Elem] * Elem -> List[Elem];

t: List[Elem] ->7 Elem;
t: List[Elem] ->? List[Elem];
Elem] -> Nat;

: List[Elem] * List[Elem] -> List[Elem];

List[Elem] -> List[Elem];

List[Elem] * Nat ->? Elem;

Nat * List[Elem] ->7 List[Elem];
[Elem] * Elem -> Nat

:? List[Elem])

